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Abstract. Generating motion and capturing motion of an articulated
body for computer animation is an expensive and time-consuming task.
Conventionally, animators manually generate intermediate frames be-
tween key frames, but this task is very labor-intensive. This paper
presents a model-based singularity-free automatic-initialization approach
to capturing human motion from widely-available, static background
monocular video sequences. A 3D human body model is built and pro-
jected on a 2D projection plane to find the best fit with the foreground
image silhouette. We convert the human motion capture problem into
two types of parameter optimization problems: static optimization and
dynamic optimization. First, we determine each model body configura-
tion using static optimizations for every input image. Then, to obtain
better description of motion, the results from all static optimizations
are fed into a dynamic optimization process where the entire sequence
of motion is considered for the user-specified motion. The user-specified
motion is defined by the user and the final form of the motion they want.
A cost function for static optimization is used to estimate the degree of
overlapping between the foreground input image silhouette and a pro-
jected 3D model body silhouette. The overlapping is computed using
computational geometry by converting a set of pixels from the image
domain to a polygon in the real projection plane domain. A cost func-
tion for dynamic optimization is the user-specified motion based on the
static optimization results as well as image fitting. Our method is used
to capture various human motions: walking, pushing, kicking, and hand-
shaking.

1 Introduction and Previous Work

Generating articulated body motion for computer animation is time consuming
and computationally expensive. Because an articulated body has many degree
of freedom (DOF), its computation is nonlinear, which makes motion generation
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difficult. Probably the simplest form of computer-based animation is key frame
animation, in which the animator denotes the key positions of the body at both
the initial and goal configurations. The animation system then smoothly inter-
polates the intermediate positions between these key positions. In this paper, we
present a cost-effective method of motion capture for computer animation using
widely-available monocular video sequences with a static background.

Tracking non-rigid objects such as moving humans presents problems, in-
cluding segmentation of the human body into meaningful body parts, handling
occlusion, and tracking the body parts over the image sequence as well as auto-
matic tracking of the first image frame. Approaches for tracking a human body
can be classified into two groups: model-based approaches and view-based ap-
proaches[1,2]. (Park et al.[3] combined view-based and model-based techniques
by processing color video at both pixel and object level.) We present here a
model-based singularity-free automatic-initialization approach to capturing hu-
man motion that uses computational geometry for model fitting computation.
One of the unique contributions of this paper is the ability to automatically
track the initial frame[4].

We define animation to be motion with motion control. This motion can be
either computed via simulation[5,6] or captured using a motion capture device.
We require motion control to satisfy kinematic goals/constraints; usually for an-
imation this involves meeting the configuration goals of a body while satisfying
constraints. If we want to do animation, we must be able to do motion control.
Basically we need a tool that will consider the entire motion (from the begin-
ning of a motion until the end) to help us to find the best motion that suits our
animation purpose. In order to do this, we convert our animation problem into a
single nonlinear cost function of (control) variables with nonlinear equality and
inequality constraints. By finding the best values of these variables, we can find
the best motion for the animation. The technique of finding local optimum values
for a nonlinear cost function with nonlinear equality and inequality constraints is
called parameter optimization. Our proposed method processes motion capture
twice. At the first level, we get the proper model body configuration for an input
image. There is no time concept involved in this process, which is called static
optimization. The body configuration must be interpolated to get motion for
computer animation. But the motion we get from image motion capture is not
a suitable character motion that satisfies user (animator) motion specifications.
For this purpose, we need to modify the input data such that the resulting
motion satisfies the user-specified motion. This second-level process considers
the entire motion in animation, and is called dynamic optimization. Witkin and
Kass[5] and Park and Fussell[6] both take user input of initial motion guessing
and find the user-specified motion, but use inverse dynamics or forward dynam-
ics, respectively, to improve the quality of the animated motion. The dynamic
optimization approach presented here is quite similar; however our approach
takes initial motion input using static optimization, and the quality of the entire
motion is supported by the image fitting, whereas the others[5,6] are based on
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simulation. In order to find the motion that satisfies the user-specific constraint,
the degree of image fitting is sacrificed.

All kinematics-based motion tracking methods may be classified into two
groups depending the use of inverse kinematics. If no inverse kinematics is used,
we call that approach a “forward kinematics-based approach”; otherwise we
call it an “inverse kinematics-based approach”. Our work is forward kinematics-
based, while the paper [7] is inverse kinematics-based. Singularity is inevitable
for methods with differential inverse kinematics.

2 Human Body Modeling and Overview of Our System

As shown in figure 1(a), the body is modeled as a configuration of nine cylin-
ders and one sphere. These are projected onto a 2D real projection plane. A
sphere represents the head, while the rest of the model body is modeled using
cylinders of various radii and lengths. Currently, we use only nine 1-DOF (1
degree-of-freedom) joints plus body displacement DOF, and a vertical rotation
to compensate for the camera view. These are our control variables for the cost
function. Figure 1(b) shows the initial state of searching for the best overlapping
configuration, given the first frame image of video sequence of figure 4. As can
be seen in figure 1(b), initial joint angle values of the model body for parameter

1
/N

(a) Model body (b) Background (c)
Projection removal

Fig. 1. 3D Model body (a), overlapping between background removed image and pro-
jected body (b), and original input image(c).
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Fig. 2. (a) Process of determining the best fitting model body configuration given an
image, (b) finding the best motion considering all image fittings.
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optimization are arbitrary. This shows that our initial model body configuration
detection for the first image frame is automatic, which is a great improvement
over other methods[4].

Figure 2(a) shows a fitting (matching) process (i.e. computing the overlap-
ping between the foreground input image and projected model body silhouette)
given an input image. A 3D model body is built. Model body joint angles and
displacements are determined, and the body is projected on a 2D projection
plane. On the 2D projection plane, we get a model body silhouette. The boxes
in figure 2 represent computational processes. The fitting process uses parame-
ter optimization [8], which modifies the model body parameters and checks the
resulting level of fitting between the image silhouette and the model body sil-
houette. When the best fitting model body configuration is found for a single
image, then the process is done for that image; thus for n input images, we run
the fitting computation n times. Figure 2(b) shows the sequence of fitting pro-
cess tasks. When the fitting computation is completed, we have a model body
configuration for each image. Then we have a complete motion sequence for the
input images. Static optimization determines the best body configuration for
a single input image, while dynamic optimization finds the best motion for a
sequence of input images.

3 Background Subtraction

A pixel color at an image location is represented as a 3D vector (R,G, B)T in
the RGB color space. A background model is built for every pixel using 30 back-
ground images that are captured when no person is contained in the camera
view. In order to handle shadows effectively, we used normalized RGB models.
Average background color vectors for image location are computed. Vector an-
gles between the average background color vector and a given color vector to
be determined are computed to determine if they are part of the foreground
or background. A foreground image is obtained by thresholding and applying
morphological filters to remove small regions of noise pixels.

4 Forward Kinematics-Based Cost Function for
Parameter Optimization

In this section, we present our cost function used in the overlapping area com-
putation for both static optimization and dynamic optimization. A projected
model body is assumed to have an affine transformation[7]. This is mathemat-
ically acceptable if an orthographic camera model is used and the model body
moves parallel to the projection plane. Given a set of joint angles and body
displacement values, the forward kinematics function computes points of body
segment boundaries. The projection matrix then projects the computed bound-
ary points on a 2D projection plane, which will be compared to a foreground
image silhouette. The overlapping area computation in the real number domain
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makes the derivative-based parameter optimization possible. Refer to the au-
thors’ papers [3,9] for more detailed explanation. The differences are that we do
not use body part information as well as distance maps. Because the input is a
vector of joint DOF values, this computation is purely forward kinematics-based
and thus presents no singularity problem|3,9].

We compute the image overlapping area using a computational geometry-
based method on each pixel. An image silhouette is one that is converted from
the 2D integer pixel domain to a real domain such that the resulting image sil-
houette becomes a jagged-edge polygon with only horizontal and vertical edges.
Projected objects are either polygon-shaped or circular. The resulting polygon(s)
may even have holes. We compute the polygon intersection between the image
silhouette and the model silhouette. Our computation is a modified version of
Weiler-Atherton’s polygon intersection/union computation [10]. We found the
best overlapping configuration using the GRG2 [8] optimization package with
the cost function discussed above.

5 Parameter Optimization

A parameter optimization problem is of the following form: minimize a nonlin-
ear cost function ¢(Z) subject to g;(-) = 0,1 < ¢ < l,g;(-) < 0,1 < j <m
where [ is the number of equality constraints, m is the number of inequality con-
straints, and g(-) and ¢(-) are nonlinear constraint functions, where - is a generic
variable(s), The parameter optimization problem solver we used is GRG2[8].
Nonlinear functions usually have many local optima as well as ridges.

5.1 Static Optimization

Given an image, we preprocess to get a foreground image silhouette. Then, to
find the best model body configuration for the image silhouette, we solve pa-
rameter optimization. In solving the parameter optimization, we define a cost
function that computes the degree of the overlapping between the foreground
input silhouette and a projected 3D model body silhouette. We call this process
static optimization. Figure 3(a) shows the processing flow of a static optimiza-
tion for the i-th image. The input variable vector Z; consists of body DOF
variables, body displacement as well as joint angles. Because we have n body
DOF variables, we have n variables for static optimization. For m input images,
we run the static optimization m times. We initialize Z; with poor (arbitrary)
input values. Figure 1(b) shows the initial search state for the best overlapping
configuration, given arbitrary input values. For every control variable, the static
optimization perturbs each variable to compute derivatives of constraint func-
tions and the cost function and then checks for the Kuhn-Tucker condition[8],
which guarantees a local minimum while satisfying constraints.
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Fig. 3. Static and dynamic optimization.

5.2 Dynamic Optimization

To find a motion over an entire sequence of input video sequences, we need dy-
namic (global) optimization. We use the term dynamic to mean considering the
entire image sequence. Figure 3(b) shows the process of dynamic optimization.
SO; is static optimization process for i-th image. Because we have m images, we
run static optimization m times. Each static optimization has n variables. For
m input images, we have total n x m variables for dynamic optimization. Static
optimization results, 2z , for all image sequences become the initial guessing val-
ues for dynamic optimization. Figure 4 shows the subject with the model figure
superimposed for a sequence containing a pushing motion. We used overlapping
area computation as a cost function for static optimization, shown in figure 5(a-
c¢). The example of a cost function of dynamic optimization presented in figure
5(d-f) includes non-violent motion evaluation as well as the degree of overlap-
ping between image and model silhouettes. (By violent motion we mean motion
with large absolute velocity/acceleration values.) MC; is a process of computing
the degree of overlapping between the model silhouette and the i-th image sil-
houette. The computation results we get from every MC; are interpolated using
C? continuous Natural Cubic Spline. Then, the motion evaluation process eval-
uates the model figure motion. The optimizer will find the best solution, 7"/, a
collection of the model body configurations for all image silhouettes.
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Fig. 4. The subject with the model figure superimposed, shown over a pushing motion.
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Fig. 5. Joint angles, velocities, and accelerations of the pushing motion. Results from
static optimization(a,b,c), and results from dynamic optimization(d,e,f).

6 Experimental Results

The 2D-based human motions we have studieded include pushing, kicking, walk-
ing and handshaking. The example shown in figure 4 has a static background
with one person (the left) pushing another (right) person away. The white line
shows the result of union of every model body part. The holes in the result-
ing body (the polygon-like object) indicate our geometry union works well. As
long as there is no heavy occlusion between the subjects, motion tracking is
satisfactory. Using joint angular values from each frame, we perform motion
interpolation using the Natural Cubic Spline. These velocity and acceleration
values are based on the motion interpolation. Despite the presence of violent
motion in the middle of the sequence, as can be seen in the graphs, the tracking
is excellent. The violent motion of the left shoulder and left elbow joint can be
observed from the velocity and acceleration graphs of Figure 5(b,c). Figure 5(d-
f) shows the same motion solved using dynamic optimization. The results of
static optimization are used as the input values for dynamic optimization. The
part of the cost function is to reduce any violent velocity and acceleration in the
static optimization-based motion. As you can see, the violent motion is quite re-
duced. Figure 6 shows walking (departing), shaking hands, and kicking motions,
respectively.
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Fig. 6. The subject with the model figure superimposed, shown over (a) a walking
motion, (b) a hand-shaking motion, and (c) a kicking motion.
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