
Human Motion Tracking by Combining

View-Based and Model-Based Methods for
Monocular Video Sequences�

Jihun Park, Sangho Park, and J.K. Aggarwal

1 Department of Computer Engineering
Hongik University

Seoul, Korea
jhpark@hongik.ac.kr

2 Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712
sangho@ece.utexas.edu

3 Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712
aggarwaljk@mail.utexas.edu

Abstract. Reliable tracking of moving humans is essential to motion
estimation, video surveillance and human-computer interface. This paper
presents a new approach to human motion tracking that combines view-
based and model-based techniques. Monocular color video is processed at
both pixel level and object level. At the pixel level, a Gaussian mixture
model is used to train and classify individual pixel colors. At the object
level, a 3D human body model projected on a 2D image plane is used
to fit the image data. Our method does not use inverse kinematics due
to the singularity problem. While many others use stochastic sampling
for model-based motion tracking, our method is purely dependent on
parameter optimization. We convert the human motion tracking problem
into a parameter optimization problem. A cost function for parameter
optimization is used to estimate the degree of the overlapping between
the foreground input image silhouette and a projected 3D model body
silhouette. The overlapping is computed using computational geometry
by converting a set of pixels from the image domain to a polygon in the
real projection plane domain. Our method is used to recognize various
human motions. Motion tracking results from video sequences are very
encouraging.
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1 Introduction and Related Work

Reliable tracking of moving humans is essential to motion estimation, video
surveillance and human-computer interface. Tracking non-rigid objects such as
moving humans presents several difficulties for computer analysis. Problems in-
clude segmentation of the human body into meaningful body parts, handling oc-
clusion, and tracking the body parts along the image sequence. The approaches
that have been proposed for tracking a human body can be classified into two
groups: model-based approaches and view-based approaches. Refer [1,6] for re-
views. Model-based approaches use a priori models explicitly defined in terms
of kinematics and dynamics. View-based approaches use heuristic assumptions
when no a priori model is available. These two approaches can be combined
at various levels to increase efficiency [15]. This paper presents a new approach
to human motion tracking that combines techniques from both view-based and
model-based approaches. The proposed system processes the input image se-
quence at both pixel level and semantic object level. At the pixel level, a Gaus-
sian mixture model is used to classify individual pixels into several color classes,
which are merged into coherent blobs by relaxation labeling. At the object level,
a 3D human body model projected to the 2D image plane is used to fit the
image data. The view-based processing at the pixel level efficiently reduces the
overhead in model-based processing at the object level by providing foreground
silhouettes.

All kinematics-based motion tracking methods may be classified into two
groups depending the use of inverse kinematics – computing joint angles given
end-tip kinematic parameters. If no inverse kinematics is used, we call that
approach a forward kinematics-based approach; otherwise we call it an inverse
kinematics-based approach. Our work is forward kinematics-based, while the pa-
pers reviewed here [8,12] are inverse kinematics-based.

Morris and Rehg [12] presented one of the first model-based methods for
deriving differential inverse kinematics equations for image overlapping, although
differential kinematics originated from robotics [5]. Morris and Rehg [12] used a
2D scaled prismatic model for figure fitting, and reduced the singularity problem
by working in the 2D projection plane. But singularity is inevitable because this
method is based on differential inverse kinematics. Huang, et al., [8] extended
the inverse kinematics work presented in [12] to solve motion parameters of the
articulated body in a statistical framework using the expectation-maximization
(EM) algorithm. Sidenbladh et al. [17] converted the human motion tracking
problem into a probabilistic inference problem aimed at estimating the posterior
probability of body model parameters given an input image.

The rest of the paper is organized as follows: Section 2 describes the procedure
at the pixel level and describes the blob formation. Section 3 presents the human
body modeling and forward kinematics-based cost function for fitting. Section
4 describes the issue of kinematics and singularity, explaining why we use a
forward kinematics-based approach to avoid the singularity problem. Results
and conclusions follow in Section 5.
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2 Pixel Classification

2.1 Color Representation and Background Subtraction

Most color cameras provide an RGB (red, green, blue) signal. The RGB color
space is, however, not effective for human visual perception of color and bright-
ness. Here, the RGB color space is transformed to the HSV (hue, saturation,
value) color space to make the intensity or brightness explicit and independent
of the chromaticity.

Background subtraction is performed in each frame to segment the fore-
ground image region. Refer to [13] for details. The color distribution of each
pixel v(x, y) at image coordinate (x, y) is modeled as a Gaussian. Using kb train-
ing frames (kb = 20), the mean µ(x, y) and standard deviation σ(x, y) of each
color channel is calculated at every pixel location (x, y). Foreground segregation
is performed for every pixel v(x, y), by using a simple background model, as
follows: at each image pixel (x, y) of a given input frame, the change in pixel
intensity is evaluated by computing the Mahalanobis distance from the Gaussian
background model.

δ =
|v(x, y) − µ(x, y)|

σ(x, y)
(1)

The foreground image F (x, y) is defined by the maximum of the three distance
measures, δH , δH , and δV for the H, S, V channels;

F (x, y) = max[δH(x, y), δS(x, y), δV (x, y)] (2)

F is then thresholded to make a binary mask image. At this stage, morphological
operations are performed as a post-processing step to remove small regions of
noise pixels.

2.2 Gaussian Mixture Modeling for Color Distribution

In HSV space, the color values of a pixel at location (x, y) are represented by
a random variable v = [H, S, V ]t with the vector dimension d = 3. According
to the method in [13], color distribution of a foreground pixel v is modeled as a
mixture of C0 Gaussians weighted by prior probability P (ωr), given by;

p(v) = ΣC0
r=1p(v|ωr)P (ωr) (3)

where the r-th conditional probability is assumed as a Gaussian, as follows:

p(v|ωr) = (2π)−d/2|Σ|−1/2
exp[− (v − µr)tΣ−1(v − µr)

2
], r = 1, ..., C0 (4)

Each Gaussian component is represented by the prior probability P (ωr) of the r-
th color class ωr, a mean vector µr of the pixel color component, and a covariance
matrix Σr of the color components.
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2.3 Training the Gaussian Parameters

In order to obtain the Gaussian parameters, an EM algorithm is used with the
first η frames of the sequence as the training data (η = 5). Initialization (E-
step) of the Gaussian parameters is done as follows: all prior probabilities are
assumed as equal, i.e., the mean is randomly chosen from a uniform distribution
within a possible pixel value range, and the covariance matrix is assumed to be
an identity matrix. Training (M-step) is performed by iteratively updating the
above-mentioned parameters. Refer [4] for details. The iteration stops if either
the change in the value of the means is less than 1 percent with respect to
the previous iteration or when a user-specified maximum iteration number is
exceeded. We start with 10 Gaussian components (C0 = 10) and merge similar
Gaussians after the training by the method in [10], resulting in C Gaussians.
The parameters of the established C Gaussians are then used to classify pixels
into one of the C classes in subsequent frames.

2.4 Classification of Individual Pixels

The color classification of the individual pixels is achieved by a maximum a
posteriori (MAP) classifier. Once the Gaussian mixture model G for pixel color
is obtained, we compute the MAP probability that each pixel in the subsequent
frames belongs to each Gaussian component. The class that produces the largest
probability value for a pixel v is chosen as the pixel-color class label ωL for that
pixel.

ωL = argmaxr(log(P (ωr|v))), 1≤r≤C (5)

2.5 Relaxation Labeling

The pixel color classification results in free-form blobs of different color labels
adjacent to one another. Connected component analysis is used to register adja-
cent blobs. Relaxation labeling [16,13] is performed to remove small blobs and
to achieve coherent large blobs according to the color similarity of the adjacent
blobs, as follows: two adjacent blobs Ai and Aj are merged together if they are
similar in color, where the similarity is defined by the Mahalanobis distance δΦ

of color feature Φ between Ai and Aj , as follows:

δΦ = (Φi − Φj)
T
ΣΦ

−1(Φi − Φj) (6)

Φ = [µH , µS , µV ]T (7)

where ΣΦ is the covariance matrix of color channels for all blobs in the image.
Blobs Ai and Aj are merged if δΦ is less than the threshold TΦ, which was
obtained from training data. (Refer [13] for details.) The result of the relax-
ation labeling is a set of blobs that segment the foreground image into coherent
regions based on color and position, which provides view-based initial segmenta-
tion and tracking of the foreground human figures. More detailed segmentation
and tracking is achieved at the object level that incorporate a 3D human body
model projected onto the 2D image plane.
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3 Human Body Modeling and Cost Function

3.1 Human Body Modeling

Fig. 1. 3D Model body(a), and overlapping between image and projected model
body(b).

As shown in figure 1(a), the body is modeled as a configuration of nine
cylinders and one sphere. (Two extra horizontal cylinders are drawn for bet-
ter illustration, but do not exist in our modeling.) These are projected onto a
2D real projection plane. A sphere represents the head, while the rest of model
body is modeled using cylinders of various radii and lengths. Our model body is
very similar to that used in [17]. We may use more sophisticated tapered/oval-
circular cylinders, but our method is robust enough that a rough body modeling
is enough to track foreground images. Currently, we use only nine 1-DOF (1
degree-of-freedom) joints plus body displacement DOF, and a vertical rotation
to compensate for a camera view. These are our control variables for the cost
function. Body parts are linked together by kinematic constraints in a hierar-
chical manner. This can be considered to be a tree structure with the base at
the pelvis (the bottom of a cylinder represents the torso) of the model body.
The methods presented in [8] cannot handle body occlusion, and ignore half of
the body. We have overcome the body occlusion problem using computational
geometry, by computing the union of the projected model body parts and then
computing the intersection with overlapping input image silhouettes.

Due to possible variations in the size of human subjects, our method must
be able to handle various magnitudes of height and thickness of the human in
input images. We can handle this problem by initially counting the number of
pixels from a pixel density map of a preprocessed image to guess the height of
a body. Then, we can run an initial parameter optimization, solving by making
the thickness of a body an additional variable while using a pre-guessed human
height. We assume that humans are standard in their body segment length ratio.
After solving the best thickness for a model body, the thickness variable becomes
a constant and remains set as a constant for the remaining body tracking over
various input images for the same human model. Figure 1(b) shows the initial
state of searching for the best overlapping configuration.
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3.2 Forward Kinematics-Based Cost Function

The kinematics problem is well explained in Craig’s book [3]. A projected model
body is assumed to have an affine transformation [8]. This is mathematically ac-
ceptable if an orthographic camera model is used and the model body moves par-
allel to the projection plane. Given a set of joint angles and body displacement
values, the forward kinematics function, h(·), where · is a generic variable(s),
computes points of body segment boundaries. The P matrix then projects the
computed boundary points on a 2D projection plane. The projected boundary
points are compared to the foreground image silhouette without using color infor-
mation from the foreground image to match the image silhouette. g(·) converts
projected points to a polygon(s). The input image is preprocessed using f(·).
The projection plane is represented in the real numbers. r(·) converts the in-
put image silhouette to a polygon(s) in real number domain. The representation
in the real number domain makes the derivative-based parameter optimization
possible. For easier tracking of the body, we use head part information from im-
age preprocessing results [13]. The distance between the silhouette head center
and the model head center is minimized. However, we can track body motion
without head information using the following equation:

c(I, θ) = −w1 × [a(r(f(I)) ∩ (∪lg(P · hl(θ, t))))]

+ w2 ×
∑

xy

(wd(x, y) × a(d(x, y) ∩ (∪lg(P · hl(θ, t)))))

+ w3 × (hhc(θ, t) − q(f(I)))2 (8)

Let us explain the notation used in equation 8 in more detail. P is an ortho-
graphic camera projection matrix, projecting a 3D model body to the 2D plane.
This is a constant matrix, assuming that camera parameters are fixed. hl(·) is
a nonlinear forward kinematics function of an l-th body part in terms of joint
DOF. θ̄ is a joint DOF vector, represented in a column matrix. (We denote x̄ as
vector x.) θ̄ is a function of time when a complete sequence is considered. g(·)
is a function that takes 2D input points and converts them to a polygon. r(·)
is a real function that takes an image as an input and converts its foreground
(non-zero value) part to a set of polygons, possibly with holes. Given a raw
image, f(·) returns a preprocessed image. Given a preprocessed human image,
q(·) computes a head center. I is a raw input image. I(x, y) denotes a grey level
pixel value at image location (x, y). d(x, y) is a square polygon of area size 1,
representing a pixel located at the (x, y)-th position in the distance map [6]. t
means time related with frames. wd(x, y) is a distance map value of (b(I))(x, y),
and has a scalar value, where b(I) is background part of input image. ∩ is an
operation that takes two polygons and returns an intersected polygon(s). ∪ is
an operation that takes two polygons and returns a unioned polygon(s). a(·) is
a function that takes a polygon and returns the size of its area. c(·) is a cost
function for parameter optimization that depends on a raw input image I and
model DOF variables θ. hhc(·) is the model head center function using forward
kinematics, and wi, i = 1, 2, 3 are weighting factors.
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Because the input is θ̄, a vector of joint DOF values, this computation is
purely forward kinematics-based and thus presents no singularity problem. In
deriving forward kinematics equations, we set local coordinates for various parts
of the body to make a hierarchical body. We can assign joint limits for model
body parts. Only a model-based approach allows easy geometric constraint com-
putation, which is implemented as possible ranges for each variable. Head part
information is provided from image preprocessing. Our method is robust enough,
regardless of head tracking, that we can find a best match from image silhouette
matching. However, the weakness of our approach is in estimating how many
humans need to be tracked.

At the start, the model body has initially guessed arbitrary input values.
Even though there is no overlapping between the projected model body and
the image silhouette, the cost function knows which direction is the best move
to minimize the cost function, due to the distance map. The value of our cost
function decreases when by moving the projected model body is moved to the
foreground image, because overlapping of the foreground image increases while
overlapping with background decreases. The parameter optimizer will find the
best fitting configuration that produces the optimum value of the cost function.
If there is an occlusion between two persons, our method must rely on a distance
map [6] for each person to track correctly.

3.3 Computational Geometry for the Cost Function

An image silhouette is one that is converted from the 2D integer pixel domain
to a real domain such that the resulting image silhouette becomes a jagged-edge
polygon with only horizontal and vertical edges. Each body part is projected
on the 2D projection plane. In this process, occlusion occurs among body parts.
Basically, projected objects are either polygon shaped or circlular. Because we
are concerned with how well the model body overlaps with the foreground im-
age silhouette, it is quite natural that the resulting body parts occlude each
other. The projected occluded body parts are unioned using a modified version
of Weiler-Atherton’s polygon union algorithm [7]. The resulting polygon-like ob-
ject(s) may even have holes in it, showing our computational geometry works
fine. We compute the polygon intersection between the image silhouette and the
model silhouette. We use pixel-based computational geometry because it will
allow us to compute a cost function based on a distance map, which has dif-
ferent values for each pixel. We found the best fitting configuration using the
GRG2 [11] optimization package with the cost function discussed so far.

4 Kinematics and Singularity

We avoid using inverse kinematics due to its singularity problem. We may also
work in differential kinematics. In terms of differential kinematics, we usually
work either on the velocity level or on the acceleration level. Working on highly
differentiated equations does not always have merits. Computed velocities may
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have errors in image overlapping computation, which may make our differen-
tial kinematics computation unreliable. Many papers presented up to now are
based on inverse kinematics and usually work on the velocity level. This type of
approach requires computation of joint angular velocities given the end tip veloc-
ities. This process involves a matrix, called a Jacobian inversion. If the Jacobian
matrix is not square, one must compute a pseudo-inverse Jacobian matrix [2].
Even if the matrix is square, it can be singular. Because they take error-prone
difference values computed between two images, the resulting computation is
not truly reliable [12]. Our approach, on the other hand, computes in a pure for-
ward kinematics-based way. This is the major difference from others’ work. Let
f̄(θ̄) be our forward kinematics equation where θ̄ is a body DOF-related vector
consisting of joint angles and body displacements. In our method, we control
θ̄. Given θ̄, we get the resulting f̄ values. If the f̄ values are not the values we
need, we modify the input θ̄. This process is done by parameter optimization.
After this computation, we interpolate θ̄ to get approximate ˙̄θ and ¨̄θ. Differential
kinematics-based methods, on the other hand, use differential kinematics equa-
tions. By differentiating f̄(θ̄), they can get ˙̄f = ∂f̄

∂θ̄
˙̄θ. ∂f̄

∂θ̄
is called a Jacobian

matrix. They get ˙̄f values from input images. In order to compute ˙̄θ, they need

to compute ∂f̄
∂θ̄

−1
. But if this matrix is not square, they must compute a pseudo-

inverse matrix [2]. However, even if the matrix is square, there is some chance
that it is singular. For singular matrix inversion, they usually use singular value
decomposition [14].

5 Experimental Results and Conclusion

We have worked on several different 2D-based human motions. The example
shown in figure 2 has a static background with one person (the left) pushing
another (right) person away. The white line shows the result of union of every
model body part. There are even holes in the resulting body, polygon-like object.
We can track every person appearing in the scene, and as long as there is no
heavy occlusion between the subjects, motion tracking is satisfactory. Using
body part information, our method can handle even heavy occlusion to a limited
degree, although the tracking quality is degraded. The graph of figure 2 shows the
corresponding pair of joint angles of torso, shoulder, and elbow of the pushing
motion of the model body as well as the real human in the scene. All joint
angle data on the graph is for the left arm. We measured human joint angles
from images and compared it with model tracking data. In the graph labels,
M means model body data while R means real body data. U means upper
while L means lower. Excellent matching was achieved for the Model left upper
arm (M L U ARM) data to the real left upper arm (R L U ARM) data
as well as for model torso data (M TORSO) to real torso data (R TORSO).
In order to compute model data, we did individual motion configuration fitting
for every frame. Only the left arm of the model body is tracked for the pushing
motion. This is quite natural and is the current limitation of using monocular
video input, which provides very limited input information. Our method finds
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one locally optimum solution from the search space, as can be seen in the graphs,
and the tracking is good. In the middle of the pushing motion, there is a body
occlusion between the two persons. Because our cost function is pixel-area based,
in the third image of figure 2, it appears that the left person’s hand is on the
right person’s face. This is due to not using body part information for tracking
motion, and can be fixed if body part information is used. Figure 3 shows the
walking (approaching) and shaking hands motions.

Fig. 2. The subject with the model figure superimposed, shown over a pushing
motion. Corresponding joint angle graph of torso, shoulder, and elbow.

In this paper, we presented a new approach to human motion tracking that
combines view-based and model-based methods at the pixel level and the object
level, respectively. The view based-methods at the pixel level use a Gaussian
mixture model and a relaxation labeling technique to achieve initial segmenta-
tion of the foreground human figures. The initial segmentation is data-driven,
and it significantly reduces the overhead in model initialization and fitting. The
model based-method at the object level uses a 3D human body model and pa-
rameter optimization techniques to achieve refined segmentation and tracking
of the moving humans. Using the human body model achieves robustness of our
system. Our forward kinematics-based system overcomes the problem of singu-
larity in inverse kinematics-based systems, and our nonlinear optimization-based
fitting does not depend on the number of particles as is the case in stochastic
sampling-based approaches. We have presented a solution to the model body
part occlusion problem [8] using computational geometry. As demonstrated in
figure 3, the motion tracking results from video sequences are very encouraging.
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