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Abstract. Recognition of human interactions in a video is useful for
video annotation, automated surveillance, and content-based video re-
trieval. This paper presents a model-based approach to motion tracking
and recognition of human interactions using multi-layer finite state au-
tomata (FA). The system is used for widely-available, static-background
monocular surveillance videos. A three-dimensional human body model is
built using a sphere and cylinders and is projected on a two-dimensional
image plane to fit the foreground image silhouette. We convert the hu-
man motion tracking problem into a parameter optimization problem
without the need to compute inverse kinematics. A cost functional is
used to estimate the degree of the overlap between the foreground in-
put image silhouette and a projected three-dimensional body model sil-
houette. Motion data obtained from the tracker is analyzed in terms of
feet, torso, and hands by a behavior recognition system. The recognition
model represents human behavior as a sequence of states that register
the configuration of individual body parts in space and time. In order
to overcome the exponential growth of the number of states that usu-
ally occurs in single-level FA, we propose a multi-layer FA that abstracts
states and events from motion data at multiple levels: low-level FA ana-
lyzes body parts only, and high-level FA analyzes the human interaction.
Motion tracking results from video sequences are presented. Our recogni-
tion framework successfully recognizes various human interactions such
as approaching, departing, pushing, pointing, and handshaking.

1 Introduction

Analysis of video data is important due to the rapid increase in the volume
of information recorded in the form of video. Most research has focused on
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shot detection [1], video indexing [2], and video summarization [3] by analysis
of meta-data. Detailed recognition of human interaction in a video is desired
for content-based video retrieval. Recognizing human interactions is a challeng-
ing task because it involves segmentation and tracking of deformable human
body parts at low level and recognition of semantics in behavior at high level.
There have been two types of approaches to human motion analysis: model-based
approaches and view-based approaches [4] depending on the availability of an
explicitly defined a priori model.

This paper presents a model-based approach to motion tracking and recog-
nition of human interaction in widely-available, static-background monocular
video sequences. We assume the following constraints: the use of a monocular
video camera with fixed parameters and a stationary background, that the pro-
jection plane is perpendicular to the camera viewing direction, and that people
move parallel to the projection plane within tolerance. We represent human in-
teractions as sequences of states that register the configuration of individual
body parts in space and time. In order to overcome the exponential growth of
the number of states that usually occurs in single-level finite state automata
(FA), we propose a multi-layer FA that abstracts states and events from motion
data at multiple levels: low-level FA analyzes body parts only, and high-level FA
analyzes the human interaction.

The rest of the paper is organized as follows: Section 2 summarizes previous
work related to model-based human tracking and behavior recognition. Section 3
describes an overview of our system. Section 4 describes the procedure of im-
age background subtraction. Section 5 presents human body modeling and cost
functional for fitting, and Section 6 explains how to generate finite states and
events for behavior recognition. Experimental results and conclusions follow in
Sections 7 and 8 respectively.

2 Previous Work

Model-based human tracking aims at estimating the kinematic parameters of
body configuration. Kinematics deals only with the motion of a body, its dis-
placement, velocity, and acceleration. All kinematics-based motion tracking
methods may be classified into two groups: inverse kinematics-based and for-
ward kinematics-based methods. The inverse method [5, 6] computes joint angles
given the end-tip parameters (i.e., the parameters of end points of the body
parts), whereas the forward method [7] computes the end-tip parameters given
the joint angles.

Morris et al.[5] presented an early model-based work for deriving differential
inverse kinematics equations for image overlap. In [5], they used a 2D (two-
dimensional) scaled prismatic model for figure fitting, and reduced the singular-
ity problem by working in the projection plane (2D). But the appearance of the
singularity is inevitable because this method is based on differential inverse kine-
matics. Huang, et al., [6] extended the inverse kinematics work presented in [5]
to solve motion parameters of the articulated body in a statistical framework
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using the expectation-maximization (EM) algorithm. Sidenbladh et al.[7] con-
verted the human motion tracking problem into a probabilistic inference problem
aimed at estimating posterior probability of body model parameters given the
input image.

The motion data obtained from the human tracker is used for human behavior
recognition. We may classify human interaction recognition into two groups:
gross-level and detailed-level. Gross-level behavior is relevant to wide-view video
data where each person is represented as a small moving blob. Examples include
interactions between people such as approaching, departing, and meeting [8, 9].
Detailed-level behavior involves movement of individual body parts such as head,
torso, hand, and leg, ect. Examples include interactions such as hand-shaking,
pointing, pushing, and kicking. [10, 11]. Both levels of recognition are desired
for surveillance applications, but most research has focused on the gross-level
recognition tasks.

We may classify human motion analysis methods according to the recognition
algorithms used: the algorithms are either stochastic, such as hidden Markov
models (HMM), or deterministic, such as finite state automata (FA). In general,
stochastic methods are useful to handle uncertainty due to image noise, imperfect
segmentation / tracking, etc., at low level processes in view-based approaches. If
the uncertainty can be effectively resolved by model-based methods at low level,
then we can use deterministic methods for interaction recognition. In this case,
the reliable fitting of the model body to image data is important.

Many approaches have been proposed for behavior recognition using vari-
ous methods including hidden Markov models, finite state automata, context-
free grammar, etc. Oliver et al.[8] presented a coupled hidden Markov model
(CHMM) for gross-level human interactions between two persons such as ‘ap-
proach’, ‘meet’, ‘walk together’, and ‘change direction’. Hongeng et al.[9] pro-
posed probabilistic finite state automata(FA) for gross-level human interactions.
Their system utilized user-defined hierarchical multiple scenarios of human inter-
action. Hong et al.[11] proposed a deterministic FA for detailed-level recognition
of human gestures such as ‘hand-waving’, ‘drawing a circle’, and ‘drawing a fig-
ure 8’. Their system was used for computer games based on a human computer
interface. Park et al.[10] proposed a string-matching method using a nearest
neighbor classifier for detailed-level recognition of two-person interactions such
as ‘hand-shaking’, ‘pointing’, and ‘standing hand-in-hand’. Wada et al. [12] used
nondeterministic finite state automata (NFA) using state product space. They
preferred NFA to HMM because NFA provides transparent information about
state transitions whereas HMM’s state transition is hidden to the user.

3 Overview of Our System

Our system is motivated by model-based human motion tracking and recognition
of human interactions in a surveillance video. We use a 3D (three-dimensional)
human body model with 11 degrees of freedom (DOF) using a sphere and cylin-
ders (See figure 1(a).) In order to apply the model-based human tracker, we re-
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move the background of the input image using a background subtraction method
similar to [13]. A 3D human body model projected to the 2D projection plane
is used to fit the foreground image silhouette.

We convert the human motion tracking problem into a parameter optimiza-
tion problem. A cost functional for optimization is used to estimate the degree
of overlap between the foreground input image silhouette and the projected 3D
body model silhouette. The degree of overlap is computed using computational
geometry by converting a set of pixels from the image domain to a polygon in
the real projection plane domain.

The kinematic parameters of the fitted model body are concatenated along
the sequence and give the motion parameters, and the motion data is analyzed
by a recognition system. We propose a multilevel deterministic finite state au-
tomata (DFA) as the recognition model. The multilevel DFA is composed of
basic-level DFA’s to abstract numerical motion data and analyze the motion
data with respect to feet, torso, and hands. The low-level DFAs independently
represent the individual body-part poses as discrete states and the body part
motion as a transition between the states. The high-level DFAs concatenate the
outputs of the low-level DFAs along the sequence, and analyze the patterns for
the recognition of body gestures and interactions between two persons.

4 Background Subtraction

Our video data involves the use of a monocular video camera with fixed parame-
ters and a stationary background. We transform the color video from RGB color
space to HSV (hue, saturation, value) color space to make the intensity or bright-
ness explicit and independent of the chromaticity: Z ∈ {H, S, V }. We build the
background model in terms of a Gaussian distribution with the mean µZ(x, y)
and standard deviation σZ(x, y) of each color channel, Z, at every pixel location
(x, y). The Gaussian parameters µZ and σZ are estimated using kb background
frames (kb = 20) that do not contain humans.

The foreground image region is segmented by background subtraction per-
formed in each frame [13]. Foreground segregation is performed for every pixel
v = [vH , vS , vV ]T as follows: at each image pixel (x, y) of a given input frame, the
change in pixel intensity is evaluated by computing the Mahalanobis distance
δZ(x, y) from the Gaussian background model for each color channel Z.

δZ(x, y) =
|vZ(x, y) − µZ(x, y)|

σZ(x, y)
(1)

The foreground image F (x, y) is obtained by choosing the maximum of the three
distance measures, δH , δS , and δV for the H, S, V channels;

F (x, y) = max[δH(x, y), δS(x, y), δV (x, y)] (2)

A binary foreground mask image is obtained by thresholding F . At this stage,
morphological operations are performed as a post-processing step to remove
small regions of noise pixels.
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Fig. 1. 3D body model (a), and the initial stage for fitting the model to im-
age (b)

5 Human Body Modeling and Cost Functional

5.1 Human Body Modeling

As shown in fig. 1(a), the body is modeled as a configuration of nine cylinders
and one sphere according to anthropometric data. The body model is projected
onto a 2D real projection plane. The sphere represents the head, while the rest
of model body is modeled using cylinders of various radii and lengths. Our body
model is similar to that used in [7]. Currently, we use only nine 1-DOF (degree-
of-freedom) joints plus body displacement, and a vertical rotation to compensate
for the camera view. These are our control variables for the cost functional. Body
parts are linked together by kinematic constraints in a hierarchical manner. This
may be considered to be a tree structure with the base at the pelvis (i.e., the
bottom of the cylinder representing the torso) of the model body. We have over-
come the body occlusion problem using computational geometry, by computing
the union of the projected model body parts and then computing the intersec-
tion with overlapping input image silhouettes. Fig. 1(b) shows the initial step of
optimization.

5.2 Forward Kinematics-Based Cost Functional

Given a set of joint angles and body displacement values, the forward kinematics
function, h(·), where · is a generic variable(s), computes the boundary points
of individual body segments. The P matrix projects the computed boundary
points on a 2D projection plane, which will be compared to a foreground image
silhouette. g(·) converts projected points to a polygon(s). The input image is
preprocessed using the background subtraction function, f(·). The projection
plane is represented in real numbers. r(·) converts the input image silhouette to
a polygon(s) in the real number domain. The representation in the real number
domain makes the derivative-based parameter optimization possible.

c(I, θ̄) = −w1 × [a(r(f(I)) ∩ (∪lg(P · hl(θ̄, t))))]

+ w2 ×
∑

xy

(wd(x, y) × a(d(x, y) ∩ (∪lg(P · hl(θ̄, t))))) (3)
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Let us explain the notation used in equation (3) in more detail.

c(I, θ̄) is a cost functional for parameter optimization, which depends on a raw input
image I and model DOF variables θ̄.

θ̄ is a joint DOF vector, represented in a column matrix. θ̄ is a function of time when
a complete sequence is considered.

P is an orthographic camera projection matrix, projecting a 3D body model to the
2D plane.

hl(·) is a nonlinear forward kinematics function of an l-th body part in terms of joint
DOF.

g(·) is a function with the argument 2D input points and converts them to a polygon.
r(·) is a real function with the argument an input imag and converts its foreground

(non-zero value) part to a set of polygons, possibly with holes.
f(·) represents a preprocessed foreground image, given a raw image.
I is a raw input image.
I(x, y) denotes a grey level pixel value at image location (x, y).
d(x, y) is a square polygon of area size 1, representing a pixel located at the (x, y)-th

position in the distance map [14].
t represents time related with frames.
wd(x, y) is a distance map value at position (x, y), and has a scalar value.
∩ is an operation that takes two polygons and returns their intersection.
∪ is an operation that takes two polygons and returns their union.
a(·) is a function that gives the area of a polygon.
wi , i = 1, 2 are weighting factors.

Because the vector of joint DOF variables, θ̄, is the input to the optimization
process, this computation is purely forward kinematics-based and thus presents
no singularity problems. We may limit the range of joint variation for individual
model-body parts. If there is an occlusion between two persons, our method
relies on a distance map [14] for each person to be tracked correctly.

5.3 Computational Geometry for the Cost Functional

An image silhouette is one that is converted from the 2D integer pixel domain
to a real domain such that the resulting image silhouette becomes a jagged-edge
polygon with only horizontal and vertical edges. The resulting polygons may have
holes in them. We compute polygon intersection between the input image sil-
houette and the model silhouette. Pixel-based computational geometry is needed
to compute the distance map [14] that is used to fit the model to foreground
image regions. Our computation is a modified version of Weiler-Atherton’s poly-
gon union/intersection computation[15]. We found the best fitting configuration
using the GRG2[16] optimization package with the cost functional in equation
(3). Figure 2 shows possible cases where either a model head or polygon-shaped
body overlaps with a pixel. In figure 2, the circle represents a projected head
outline and an oblique polygon represents a body part, while a square represents
a pixel. The union of these irregular-shaped objects results in a projected model
body silhouette. After obtaining the union, a triangulation process is used to
compute the area of the union of polygon-shaped object. It may be noted that
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Fig. 2. Five possible cases of a pixel(square) partially occluded by a model
head, and seven possible cases of a pixel(square) partially occluded by a polygon
body

there are arcs involved in the computation. Our cost functional does not allow
ridges, an area of a function with zero gradient. As a consequence, we cannot
work on a purely pixel-based integer cost functional. Therefore, we compute the
area of overlap between pixels and the projected body model in the sub-pixel
accuracy in order to eliminate ridges in our cost functional. Even a small change
in the 3D body model is reflected in the cost functional.

6 Multi-layer Deterministic Finite State Automata
(DFA) for Behavior Recognition

We employ a sequence analyzer and an event detector that are similar to those
of [12]. The sequence analyzer is a DFA, while the event detector allows state
transition. Our finite state automata consists of a finite set of states(Q), an initial
state(q0), a finite set of events(

∑
), a state transition function(δ), and a finite set

of final states(F ). The sequence analyzer is represented by (Q, q0,
∑

, δ, F ). Each
intermediate state qi in the sequence (q0, q1, · · · , qn) corresponds to a frame. The
event detector analyzes motion data obtained from a parameter optimization
sequence and detects events. We designed separate sequence analyzers (DFAs)
for each body part: hands, body center (torso), and feet. We consider all possible
states for feet, hands and torso, independent of the rest of the body. These DFAs
abstract motion data from each body part. We employ a higher-level DFAs
to handle motion recognition given low-level motion abstraction. For a single
person, we employ three low-level sequence analyzers. Since there can be more
than one person present in a scene, our low level sequence analyzer is of the form
(p
mQ, p

mq0, p
m

∑
, p
mδ, p

mF ), where p ∈ {1, 2, 3} is an index for body parts, and m is
an index for each person in the scene. 1

2q
i ∈ 1

2Q means 1
2q

i is a state of sequence
index number i, of a second person in the scene, of body part index one.

The use of multi-layer DFAs reduces the large number of states to be handled
in interaction recognition. Assuming that there are two persons in a scene to
generate motion states of the model body, each person has 27 (33) possible
states (three states for each of three body parts.) If two persons are involved
in an interaction, the DFA will classify 729 (272) states. Generally, we need
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Fig. 3. The subject with the model figure superimposed, shown over a walking
motion

|11Q| × |21Q| × |31Q| × |12Q| × |22Q| × |32Q| states for an interaction of two persons,
where |Q| is the number of states in Q. This exponential growth quickly becomes
intractable. Rather than generating 729 states and designing state transitions, we
design three states to recognize each motion of a body part, totaling nine states
for a single person. Then we consider a tuple of states, (1mqi, 2

mqi, 3
mqi), a token

made of low-level state transitions, to recognize the motion of a person with an
index number m. To recognize an interactive motion between two persons, we
use a tuple of states, (11qi, 2

1q
i, 3

1q
i, 1

2q
i, 2

2q
i, 3

2q
i). Therefore, we design a higher-

level DFA to recognize behavior based on lower-level sequence analyzers, plus
nine lower-level states to abstract motion data rather than 729 state and state
transition designs. The high-level DFA also refers to the data related to the low-
level state transition. Figure 3 shows an example. For the departing/approaching
motion, abstract motion data allows us to recognize that two persons are walking,
but we cannot tell whether they are departing/approaching without referring to
the distance between the two persons. (Refer figure 3.)

The high-level DFAs analyze the interaction in a cause and effect framework.
Figure 4 shows an example of ‘pushing’ interaction, in which the right person ap-
proaches and pushes the left person (cause), and the left person moves backward
as a result of being pushed (effect). Our observation shows that meaningful inter-
actions are characterized by a sequence of specific states belonging to relatively
small number of states. Therefore, our high-level DFAs focus on a subset of all
possible states instead of analyzing all 729 states. In the ‘pushing’ interaction,
we define a minimum of four states to recognize the pushing motion: two states
representing the contact states by the left/right pushing person, respectively,
and the other two states representing the moving backwards of the right/left
pushed person, respectively.

7 Experimental Results

We have analyzed several different 2D-based human motions; walking (i.e., ap-
proaching, departing), pushing, kicking, pointing, and hand-shaking. The exam-
ple shown in figure 5 involves two persons in hand-shaking interaction. The body
model properly fitted to image sequence shows the effectiveness of our geometry
union process. The model body cannot distinguish between the left/right side of
the body to be tracked. This limitation is the result of using monocular video
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Fig. 4. The subject with the model figure superimposed, shown over a pushing
motion

Fig. 5. The subject with the model figure superimposed, shown over a hand-
shaking motion

input, which provides very limited input information. Our method finds one lo-
cally optimum solution from a search space. The motion tracking is excellent, as
shown in figures 3, 4, and 5. After motion tracking, we get two sets of motion data
in terms of frames, one for each person appearing in the scene. The multilevel
DFA processes the motion data to recognize human interactions; the low-level
DFA analyzes the motion of individual body parts to generate states, and the
high-level DFA analyzes the sequence of the state changes to generate the recog-
nition results of the interaction. Recognition of interaction is achieved when the
multilevel DFA stops in a final accepting state. Computation time depends on
the degree of accuracy that is sought and the size of the input image.

8 Conclusion

In this paper, we have presented a model-based approach to human motion
tracking and a multilevel DFA-based approach to behavior recognition. The
model based-method uses a 3D human body model and parameter optimization
techniques to track the moving humans. Our forward kinematics-based system
overcomes the problem of singularity in inverse kinematics-based systems. We
have presented a solution to the model body part occlusion problem using com-
putational geometry. The motion data of the body model enables us to apply
our DFAs to the problem of recognizing human interaction. We used a multilevel
DFA to overcome the exponential growth of the number of states in usual single-
level DFA. The results of motion tracking from video sequences are excellent for
a number of activities, and our recognition framework successfully recognizes
various human interactions between two persons.
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