
1

CodeCast: A Network Coding Based Ad Hoc
Multicast Protocol

Joon-Sang Park†, Desmond S. Lun‡, Yunjung Yi§, Mario Gerla†, and Muriel Ḿedard¶
† Computer Science Department, University of California, Los Angeles

‡ Coordinated Science Laboratory, University of Illinois at Urbana-Champaign
§ Honeywell Laboratory

¶ Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

Abstract— In this article, we present CodeCast, a net-
work coding based ad hoc multicast protocol. CodeCast
well-suited especially for multimedia applications with low
loss, low latency constraints such as audio/video streaming.
The key ingredient of CodeCast is random network coding
which transparently implements both localized loss recov-
ery and path diversity with very low overhead. Simulation
results show that in a typical setting, CodeCast yields near
100% delivery ratio as compared to 94% delivery ratio
by traditional multicast. More importantly, the overhead
is reduced by as much as 50%.

I. I NTRODUCTION

Major applications in mobile ad hoc networks
(MANETs) include teleconferencing, disaster relief co-
ordination, and battlefield operations which are group-
oriented and mission-critical, requiring both accurate
data delivery and timeliness. Undoubtedly, low loss, low
latency multicast is a basic building block supporting
such applications, especially in the face of frequent route
outages and random packet drops due to mobility, fading,
external interference, etc.

In this article we consider a multicast source that
delivers multimedia data at rather constant rate, with
a delay constraint. To illustrate the concept, a good
example would be a security system transmitting images
collected from various video cameras distributed in a
large industrial plant. The source multicasts these images
in a carousel fashion to dozens of security agents that
are patrolling the area either on foot or in vehicles.
The agents are immersed in a much larger MANET
represented by employees, contract workers, visitors etc.
It takesT seconds to cycle over all the video cameras,
thus the useful delay bound to deliver an image to a
security guard isT . BeyondT , data is stale and should
be dropped.

Multicast packets may be corrupted and lost because
of many reasons. First, fading, environment interference,
and mobility can produce random like losses. In the

case of military or civil defense surveillance, adver-
sary/terrorist jamming may cause additional data loss.
Another cause of loss is packet collision. In particular,
collisions among hidden terminals are quite frequent in
multicast where usual protection against hidden termi-
nals à la Request-To-Send/Clear-To-Send (RTS/CTS) in
802.11 Media Access Control (MAC) is unavailable. If
source rate exceeds network capacity, congestion builds
up. Packet collisions and buffer overflow intensify, even-
tually causing network collapse unless proper end to end
flow and congestion control strategy is in place. In this
study, however, we simply assume that the source rate
has been set to a value that does not cause congestion
in normal operating mode.

Random losses cause quality degradation in the re-
ceived images. In fact, beyond a certain threshold, the
quality may be so poor to undermine the surveillance
application. Thus, it behooves us to control loss by using
packet loss recovery. However, 100% recovery is not
the answer since full recovery may violate the delay
constraints (thus rendering the recovered data useless).
Moreover, a very aggressive recovery scheme may in-
troduce excessive overhead, causing congestion to set in
and possibly forcing the system to total collapse unless
input rate is also controlled.

The goal of our multicast design is to use loss recov-
ery judiciously, i.e., controlling loss while at the same
time keeping latency in check. We call this problem
the controlled loss, bounded delay multicast problem.
Besides video surveillance, several other applications
fit this model, such as tactical situation awareness dis-
semination, periodic sensor measurement distribution,
entertainment audio/video steaming, etc.

Reliable multicast is closely related to the problem
at hand. In fact, reliable multicast has been an active
research area in wired IP networks over the years
and various techniques have been proposed (e.g., [3],
[12]). Most techniques and protocols developed for
wired IP networks, however, hardly work as intended

2

in MANETs. As exemplified in [13], if one of thewired
protocols runs in MANETs without any modification,
it will incur excessive control overhead for maintaining
underlying routing structure and also unreasonably long
latency due to frequent route outages and heavily con-
tended broadcast medium. Clear, for MANET protocols,
the design choices should be made considering unique
characteristics of MANETs and to leverage unique op-
portunities that MANETs provide.

Packet losses in MANETs tend to be random and
locally contained, i.e., uncorrelated across nodes and
packets. That is, it is likely that each node in a neigh-
borhood undergoes dissimilar packet reception charac-
teristic. Therefore, upon packet losses, a localized (or
neighbor) loss recovery strategy, i.e., neighbors’ helping
each other, can be very efficient and effective at the same
time. To fight correlated losses (e.g., losses experience
by multiple receivers due to common upstream broken
link) path diversity, i.e., the use of multiple, disjoint
paths, paves an effective way. Path diversity is abundant
typically in MANETs when nodes are densely packed.
The main question thus is how to utilize path diversity
efficiently. Our protocol namedCodeCastachieves the
controlled loss, bounded latency multicast with the help
of localized loss recovery and path diversity. The key
ingredient of CodeCast is random network coding [4]
which transparently implements both localized loss re-
covery and path diversity with very low overhead.

By network coding, we refer to the notion of per-
forming coding operations on the contents of packets
throughout a network. This notion is generally attributed
to Ahlswede et al. [1], who showed the utility of the
network coding for multicast. The work of Ahlswede et
al. was followed by other work by Koetter and Médard
[7] that showed that codes with a simple, linear structure
were sufficient to achieve the capacity of multicast
connections in lossless, wireline networks. This result
was augmented by Ho et al. [4], who showed that, in fact,
a random construction of the linear codes was sufficient.

The utility of such random linear codes for reliable
communication over lossy packet networks—such as
MANETs—was soon realized [10]. In [9], a prescription
for the efficient operation of MANETs is given, which
proposes using the random linear coding scheme of
[10] coupled with optimization methods for selecting
the times and locations for injecting coded packets into
the network. This problem of selecting the times and
locations for injecting packets is calledsubgraph selec-
tion. The prescription given in [9] allows potentially for
the optimal way of setting up a single connection to be
found, but finding an optimal solution may be complex,
especially under the complex constraints imposed by

MANETs.
The protocol we propose in this article is essentially a

heuristic implementation of the ideas in [9]. We propose
heuristic methods for subgraph selection that are suitable
for MANETs under 802.11 MAC, and we introduce
some heuristic modifications to the random linear coding
scheme of [10]. Heuristic methods for subgraph selection
in wireless networks are also given in [14], but they differ
from ours because they are chosen for energy efficiency
of broadcasting applications in networks under the ideal
collision-free MAC. Our work forms part of an emerging
body of work on protocol development and assessment
for wireless networks with network coding. Other works
in this category are [5], [6], both of which focus on
protocols solely for unicast.

The rest of this article is organized as follows. Sec-
tion II illustrates the operation of CodeCast and an
evaluation of CodeCast through simulation is presented
in Section III. Finally, section IV concludes the article.

II. CODECAST PROTOCOL

We assume for simplicity that an application gener-
ates a stream of equal size framesp1, p2, p3, ... where
subscripts denote unique and consecutive sequence num-
bers. If an application generates a stream of varying
size data frames, the frames are fragmentized and/or
padded to render them into equal size frames. We also
assume that each stream (or an application generating
the stream) can be uniquely distinguished by a source
address and port number pair (as in usual multicast
protocols) or a globally unique identification number as-
signed to each stream. The stream of frames is logically
reorganized into a stream of blocks, each of which is a
set of frames with adjacent sequence numbers. We use
a tuple (blockid, blocksize) to denote a block to which
frames with sequence numbers equal to or larger than
blockid and smaller than (blockid + blocksize) belong.
(blockid, blocksize > 0.) An application framepk is
said to bein (blockid, blocksize) iff k ≥ blockid, k <
(blockid+ blocksize). A coded packetc(blockid,blocksize)

is a linear combination of frames in (blockid, blocksize).
That is, c(blockid,blocksize) =

∑blocksize
k=1 ekp(k−1+blockid)

whereek is a certain element in a certain finite fieldF.
Every arithmetic operation is overF. Application frame
p’s and coded packetc’s are also regarded as vectors
over F. In the header of a coded packet, theencoding
vector e= [e1 ... eblocksize−1] is stored along withblockid
and blocksize for the purpose of laterdecoding at the
receivers. Transporting the encoding vectors along with
coded packets was first suggested in [2]. When generat-
ing a coded packetc, eachek is drawn randomly from
F, hence the name of random linear coding. Similarly

3

….........

time

…

A random linear combination of Block (1,8) frames

A random linear combination of Block (9,8) frames

Block (1,8) Block (9,8)

Application Frames

c(1,8) c(9,8)

Coded Packets

Application
Layer

Network
Layer

Fig. 1. Application frames, blocks, and coded packets (blocksize = 8)

to the application frames, a coded packetc is said
to be in (blockid, blocksize) iff the coded packetc
is tagged with(blockid, blocksize). Fig. 1 illustrates
the relationship between application frames, blocks, and
coded packets. We assume for simplicity that blocks are
non-overlapping, i.e, at the source applications frames
are organized and coded packets are generated such that
not an application frame nor a coded packets appears in
two different blocks. Throughout this article, we abuse
lowercase boldface letters to denote vectors, frames, or
packets, uppercase letters to denote matrices, italics to
denote variables or fields in the packet header.

We refer to the entity (in network layer) that performs
encoding and decoding for the protocol as CodeCast
Agent. Since a block of application frames is required
to generate a coded packet, the agent has to collect and
buffer the application frames. We simply assume that
data storage on each node is large enough to store all
the data for a limited amount of time. Once a whole
frame block (blockid, blocksize) is amassed, the agent
generatesblocksize coded packetc(blockid,blocksize)’s,
and broadcast them to the neighborhood. (See Fig. 1)
blocksize need not be a fixed value. If the agent receives
known application frames,blocksize can be determined
on-the-fly according to the delay constraints of the
frames. The objective is to make the size of each block
big enough to gain efficiency while minimizing the
possibility of delivering packets with delay constraint vi-
olations. (In general, the bigger the block size the greater
the efficiency gain is, and also the delay.) Otherwise,
the agent uses a predefined number to limit maximum
wait time in the buffer. For example, if an application
generates frames at a rate of 10 frames/sec and they
all expire 1 second after creation, the agent sets the
block size to 8 frames—giving 0.3 seconds of leeway
for delivery.

On reception of a coded packetc(blockid,blocksize),
every node stores the packet in its local memory for

later decoding and forwarding. To decode and recover
blocksize application frames belonging to (blockid,
blocksize), a node must collect more thanblocksize
coded packets tagged with(blockid, blocksize) and en-
coding vectors that are linearly independent of each
other. Once collected, CodeCast Agent decodes and
recovers theblocksize original application frames and
deliver them to the application. Letck be a coded
packet labeled(blockid, blocksize) in a node’s local
memory,ek be the encoding vector prefixed tock, and
pblockid+k−1 be an application frame to be decoded and
recovered wherek = 1, ..., blocksize. Further, letET

= [eT1 ... eTblocksize], CT = [cT1 ... cTblocksize], and PT

= [pTblockid ... pTblockid+blocksize−1] where superscriptsT
denotes the transpose operation, then conceptuallyP =
E

−1
C, which obtains the original application frames.

Note that all ek’s must be linearly independent to be
able to invertE.

If a node receives a coded packet with a new tuple
(blockid, blocksize), it sets up a timer for the tuple
(blockid, blocksize) expiring in blocktimout seconds.
When the timer expires, it broadcasts to the neighbor-
hood r coded packet́c(blockid,blocksize)’s after local re-
encoding. r is set to 1 in the simplest setting. The
local re-encoding is through the same process that the
data source has undergone to generate a coded packet,
i.e., a random linear combination of packets tagged
with the same (blockid, blocksize) available in local
memory. Note that though the packets in memory are
coded ones thus the re-encoded packetć(blockid,blocksize)

=
∑blocksize

k=1 ékck is tagged with the encoding vec-
tor é =

∑blocksize
k=1 ékek where eachék is drawn uni-

formly from F. ck and ek are a coded packet labeled
(blockid, blocksize) in local memory and the encoding
vector prefixed tock respectively. The timer for (blockid,
blocksize) is reset on expiration unless a decodable set
of coded packets in (blockid, blocksize) is collected,
i.e, all the applications frames in (blockid, blocksize)

4

are decoded and recovered. The timer for (blockid,
blocksize) can be cleared if the deadline has passed for
all the frames in (blockid, blocksize).

On the expiration of the timer for (blockid, blocksize),
even though there are less number thanblocksize of code
packetc(blockid,blocksize)’s in local memory, a node has
to generate and transmit a coded packet using packets
available in the memory. The number of packets that are
actually combined to yield a coded packet is recorded as
rank in the header of the coded packet. A coded packet
c with rank smaller thanblocksize is augmented with
a nullspace vectorn which is a vector in the nullspace
of all encoding vectors of packets that are combined
to yield the coded packetc. Since a coded packet
c(blockid,blocksize) with rank smaller thanblocksize in-
dicates that the sender of thec(blockid,blocksize) is in need
of more coded packets labeled (blockid, blocksize) to
be able to decode and recover application frames in
(blockid, blocksize), any node receiving such a packet
transmits another coded packet to help the sender of
c(blockid,blocksize) collecting more coded packets if there
is in local memory a packet with the encoding vector not
orthogonal to the nullspace vector ofc(blockid,blocksize).

Besidesblocksize, blocktimeout is another key pa-
rameter having an impact on performance—especially
end-to-end delay. For simplicity we use a fixed value
for blocktimeout. A reasonable value is a multiple of
the average broadcast jitter. Since every transmission
in CodeCast is MAC/link layer broadcasting, a small
random amount of wait time before each transmission
called broadcast jitter is applied to reduce collisions.
Without broadcast jitter, MAC/link layer broadcasting
suffers severely from the hidden terminal problem.

Clearly, it is sub-optimal, producing unnecessary data
transmissions, if the entire network participates in the
forwarding of multicast data to deliver it from the source
to a set of designated receivers. As indicated earlier, the
problem of finding the optimal set of forwarding nodes
and the frequency of injecting packets is calledsubgraph
selection. We use a simple heuristic for the problem in
CodeCast. Every coded packet carries in the header three
more fields,vldd, dist, andnust. The one-bit fieldvldd
is set if either the sender is a multicast receiver or has
received a previous-block coded packet withvldd bit set
from one of the sender’s downstream nodes. A node con-
siders a neighboring node to be a downstream node if the
neighboring node transmits a packet with a largerdist
value than thedist value the node maintains. Each node
maintains as a local variabledist indicating the hop-
distance from the multicast data source and copies its
value to every code packet the node transmits. Every time
a node transmits a coded packetc, dist is recalculated as

one plus the biggestdist value found in the headers of
the packets which are combined to yield the coded packet
c. Conversely, a node considers a neighboring node to
be a upstream node if the neighboring node transmits
a coded packet in a new block (blockid, blocksize)
or a smallerdist value than thedist value the node
maintains. Each node also maintainsnust indicating
the number of upstream nodes as a local variable and
records its value in the header of every packet the node
transmits. As mentioned earlier, a node broadcasts to the
neighborhoodr coded packetc(blockid,blocksize)’s when
the timer for (blockid, blocksize) expires.r can be a
constant value (e.g.,r = 1) and the same for every node.
Or nodes can have time-varyingr: r is set to⌈ blocksize

mn
⌉

wheremn is the minimum value ofnusts received from
any downstream node. This way, each node determines
individually the frequency of injecting packets. If a node
does not receive any packet withvldd bit set transmitted
by any downstream node while processingprunecount
consecutive blocks, it stops forwarding forsleeptimout
seconds. This way, unnecessary nodes are pruned off the
forwarding subgraph.

In CodeCast, there is no clear notion of paths or routes
that packets follow through as in conventional multicast.
Rather innovative packets are propagated through the
forwarding subgraph which provides rich path diversity.
By an innovative packet, we mean a packet that con-
tributes to decoding and recovering of application frames
on a node, i.e., a packet carrying the encoding vector
linearly independent of those in the node’s local storage.
In fact, the forwarding subgraph in CodeCast is very
robust to node mobility and random errors. Displacement
or failure of a few nodes in the forwarding subgraph (or
structure) does not affect the delivery of packets much in
CodeCast whereas in conventional multicast such events
might result in a series of packet drops.

III. PERFORMANCEEVALUATION

To evaluate the performance of CodeCast, we imple-
mented CodeCast in QualNet [11], a packet-level net-
work simulator, and conducted a set of simulations using
the following settings: 802.11 MAC; two-ray ground
path-loss propagation model; 376m of transmission
range and 2Mbits/sec of channel bandwidth; 100
nodes randomly placed on 1500× 1500 m2 field; 120
seconds of simulation time; single multicast group with
single source and 10 receivers unless otherwise speci-
fied; constant bit-rate application traffic tranmitting 512
byte packets at 5Kbytes/sec rate; Random Waypoint
Mobility model with 0 pause time, 0 minimum speed,
and varying maximum speed unless otherwise specified.
Results are averaged over 10 runs with various random

5

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

0 10 20 30 40

Max Node Speed (m/sec)

D
e

liv
e

ry
 R

a
ti
o

CodeCast-8-dp0

CodeCast-8-dp10

CodeCast-4-dp0

UDP-dp0

UDP-dp10

(a) Packet delivery ratio

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40

Max Node Speed (m/sec)

N
o
rm

a
liz

e
d
 P

a
c
k
e
t
O

H

CodeCast-8-dp0

CodeCast-8-dp10

CodeCast-4-dp0

UDP-dp0

UDP-dp10

(b) Normalized packet overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40

Max Node Speed (m/sec)

A
v
e

ra
g

e
 E

n
d

-t
o

-E
n

d
 D

e
la

y
 (

s
e

c
)

CodeCast-8-dp0

CodeCast-8-dp10

CodeCast-4-dp0

UDP-dp0

UDP-dp10

(c) End-to-end delay

Fig. 2. Comparison of CodeCast and ODMRP: Varying node speed

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

5 10 15 20 25 30

Number of Receivers

D
e
liv

e
ry

 R
a
ti
o

CodeCast-8-dp0

CodeCast-8-dp10

UDP-dp0

UDP-dp10

(a) Packet delivery ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30

Number of Receivers

N
o
rm

a
liz

e
d
 P

a
c
k
e
t
O

H

CodeCast-8-dp0

CodeCast-8-dp10

UDP-dp0

UDP-dp10

(b) Normalized packet overhead

Fig. 3. Comparison of CodeCast and ODMRP: Varying group size

seeds. For CodeCast, we setblocktimout to 40 ms,
prunecount to 5, sleeptimout to 15 seconds, and the
deadline of each packet to 1 second after creation. Note
that we setr to 1 on every node always. UsingF28 field,
each data packet carries an additional 16 byte header to
hold the encoding vector,blockid, blocksize, rank, etc.
In case of packets withrank < blocksize, additional 8
bytes are needed to hold the nullspace vector.

We contrast CodeCast to the plain User Datagram
Protocol (UDP) running on top of a conventional mul-
ticast protocol in mobile settings. In this comparison,
UDP assumes On Demand Multicast Routing Protocol
(ODMRP) [8] as the underlying multicast protocol. We
restrict our attention to ODMRP since as shown in [8]
it is one of the best performing protocols especially
in mobile and lossy channel settings in which we are
specially interested. The challenge of MANET is, in
fact, maintaining network operations in face of nodes’
mobility and lossy wireless channel. To simulate the
lossy channel, nodes are forced to drop successfully
received packets randomly with some probability. For
CodeCast, two different block sizes are used to evaluate
the impact of the block size on the performance. In
figures, CodeCast-α-dpβ denotes CodeCast usingα-
packet blocks and operating in the artificial lossy chan-
nel with packet drop probabilityβ%. CodeCast-8-dp0
indicates the case where 8-packet block and packet drop

probability 0 are used, CodeCast-8-dp10 does the case
with 8-packet and packet drop probability 10%, and
CodeCast-4-dp0 is for the 4-packet block in combination
with packet drop probability 0 case. Similarly, UDP-dpβ
denotes UDP for packet drop probabilityβ% case.

In Fig. 2(a), CodeCast demonstrates near 100% data
delivery regardless of node speed, block size, packet drop
probability. On the other hand, the packet delivery ratio
of the conventional multicast represented by ODMRP
degrades to 94% as mobility and packet drop probability
increase. The packet delivery ratio is defined as the ratio
of data packets received by all receivers over total data
packets sent. More importantly, as shown in 2(b), Code-
Cast incurs less overhead than the conventional multicast
(when the block size is 8 packets). When the maximum
node speed is 40 m/sec the reduction in overhead is as
much as 40%. To measure protocol overhead, we use a
commonly used metric, the normalized packet overhead
defined as the total number of packets transmitted to the
wireless channel by any node in the network divided by
the total number of data packets delivered to any receiver.
The overhead of CodeCast with 4-packet blocks is also
comparable to the conventional multicast when mobility
is high.

Random errors (forced errors in our simulation) and
route breakage due to node mobility are two main causes
of packet losses in the conventional multicast. In conven-

6

tional multicast, a tree (or mesh) structure is constructed
and maintained for the packet delivery but the tree
(or mesh) structure is prone to be broken and difficult
to maintain when nodes are moving fast. Thus packet
delivery ratio deceases as node speed increases. To
cope with the problem, ODMRP superimposes multiple
meshes using more nodes as forwarding nodes such that
it can survive single mesh failure. ODMRP tends to use
more and more nodes as forwarding nodes as mobility
increases, which is equivalent to trading overhead off
for high packet delivery ratio and explains ODMRP’s
overhead increase (sub)linear in the node speed. Despite
the effort, unfortunately, ODMRP permits packet losses
in highly dynamic MANETs. CodeCast, whereas, always
shows near perfect packet delivery ratio since it builds a
forwarding structure (or subgraph) that is very robust to
node mobility.

Fig. 2(c) shows the drawback of CodeCast, end-to-end
delay. The end-to-end delay is the difference between
packet generation time at the source and packet delivery
to the application at the receiver. In CodeCast, a certain
level of increase in end-to-end delay is inevitable since
at the source it takes time to collect a block of packets
such that coding over the block is possible. In our
simulations, the application generates packets at a rate
of 10 packets/sec so if the block size is 8 packets each
packet spends on average 0.35 seconds waiting in the
buffer; it spends 0.15 seconds if the block size is 4
packets. This in part explains CodeCast-4’s low average
end-to-end delay compared to those of CodeCast-8s.

Fig.3(a) and Fig.3(b) illustrate CodeCast’s perfor-
mance with varying number of receivers in the multicast
group when the maximum node velocity is fixed to 20
m/sec. We observe again that CodeCast achieves near
100% data delivery while retaining very low overhead re-
gardless of environmental changes. Notably, CodeCast’s
overhead is only the half compared to the conventional
multicast when the number of receivers is over 20.

IV. CONCLUSIONS

In the article, we presented CodeCast, a network
coding based controlled loss, bounded delay multicast
protocol. The main ingredient of CodeCast is random
network coding which is used to implement both lo-
calized loss recovery and path diversity transparently.
Through simulation, we demonstrated that CodeCast
achieved near perfect packet delivery ratio while main-
taining lower overhead than conventional multicast.

Considering the fact that MANETs are extremely sen-
sitive to overload, an immediate future work of CodeCast
is to incorporate a congestion control mechanism to

avoid congestion collapse. In this article, we assumed
that the source rate was fixed a priori, possibly based on
careful engineering of resource allocations. In practice,
the a priori resource allocation is difficult at best in a
mobile environment. Moreover, an increasing number of
applications allow the adjustment of the source rate to
match network conditions (e.g., adaptive coded video
sources, adaptive resolution data dissemination, etc). It
is thus appropriate to develop an extension of CodeCast
that includes source rate adaptation.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network
information flow. IEEE Trans. Inform. Theory, 46(4):1204–
1216, July 2000.

[2] P. Chou, Y. Wu, and K. Jain. Practical network coding. InProc.
51st Allerton Conf. Communication, Control and Computing,
Oct.

[3] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A Reliable Multicast Framework for Light-weight Sessions and
Application Level Framing. IEEE/ACM Trans. Networking,
5(6):784–803, Dec. 1997.

[4] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi,
and B. Leong. A random linear network coding approach to
multicast. Submitted toIEEE Trans. Inform. Theory.

[5] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Ḿedard. The
importance of being opportunistic: Practical network coding
for wireless environments. InProc. 43rd Annual Allerton
Conference on Communication, Control, and Computing, Sept.
2005.

[6] R. Khalili and K. Salamatian. A new relaying scheme for cheap
wireless relay nodes. InProc. Third International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks , 2005.

[7] R. Koetter and M. Ḿedard. An algebraic approach to network
coding. IEEE/ACM Trans. Networking, 11(5):782–795, Oct.
2003.

[8] S.-J. Lee, W. Su, and M. Gerla. On-demand multicast routing
protocol in multihop wireless mobile networks.ACM/Kluwer
Mobile Networks and Applications, special issue on Multipoint
Communications in Wireless Mobile Networks, 2002.

[9] D. S. Lun, M. Médard, and R. Koetter. Efficient operation
of wireless packet networks using network coding. InProc.
International Workshop on Convergent Technologies (IWCT)
2005, June 2005. Invited paper.

[10] D. S. Lun, M. Médard, R. Koetter, and M. Effros. On coding
for reliable communication over packet networks. Submitted to
IEEE Trans. Inform. Theory.

[11] Scalable Network Technologies, http://www.scalable-
networks.com.

[12] S. Paul, K. K. Sabnani, and S. B. J. C. Lin. Reliable Multicast
Transport Protocol (RMTP).IEEE Journal on Selected Areas
in Communications, 15(3):407–421, 1997.

[13] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla. Reliable Adap-
tive Lightweight Multicast Protocol. InProc. IEEE Internationl
Conference on Communications, 2003.

[14] J. Widmer, C. Fragouli, and J.-Y. Le Boudec. Low-complexity
energy-efficient broadcasting in wireless ad-hoc networks using
network coding. InProc. WINMEE, RAWNET and NETCOD
2005 Workshops, Apr. 2005.

