
CORA: Collaborative Opportunistic Recovery
Algorithm for Loss Controlled, Delay Bounded Ad

Hoc Multicast

Yunjung Yi, Jiejun Kong, Mario Gerla

Computer Science Department, University of California, Los Angeles, CA 90095, USA
email: {yjyi,jkong,mario}@cs.ucla.edu

Joon-Sang Park

Department of Computer Engineering, Hongik University
72-1 Sangsoo-dong, Mapo-gu, Seoul 121-791, Korea

email:jsp@hongik.ac.kr

Abstract

In this paper, we present Collaborative Opportunistic Recovery Algorithm (CORA) de-
signed for multicast multimedia applications with low loss as well as latency constraints in
ad hoc networks. CORA is an independent service that can run atop any ad hoc multicast
routing protocol. The main features of CORA are localized recovery process, deterministic
(as opposed to probabilistic) peer-to-peer recovery, and ability to trade off recovery with
latency. A key component of CORA is the Cached Packet Distance Vector (CPDV) protocol
for local peer-to-peer loss recovery. CPDV finds and retrieves the nearest copy of the miss-
ing packet while providing other useful NACK aggregation features. We use simulation
experiments to demonstrate the effectiveness of CORA and explore the tradeoffs of CPDV
localized recovery benefits versus memory and processor overhead. In a typical simulation
experiment with mobile nodes CORA yields up to 99% delivery ratio as compared to 91%
delivery ratio by Gossip. This improvement is achieved with negligible overhead.

Keywords: Ad hoc networks; Multicast; Routing; Reliable

1 Introduction

A mobile ad hoc network (MANET) is a self-organizing mobile network formed
by peer nodes using wireless radios. With or without the wired infrastructure, it can
establish an instant communication structure for civilian and military applications.

Preprint submitted to Computer Communications

Its minimal requirement on deployment time and space is particular useful in a hos-
tile environment, where preexisting infrastructure cannot be easily acquired or may
be damaged/destroyed at any time. Key applications in these scenarios include tele-
conferencing, disaster relief, data dissemination, and battlefield operations which
are group-oriented and mission-critical, requiring both high data reliability and
timeliness guarantees. Undoubtedly, reliable multicast is a critical building block to
support these applications, even in the presence of random node mobility, frequent
route outages, and random external interference.

Reliable multicast has been an active research area in wired IP networks. Various
interesting and effective concepts have been proposed in reliable IP multicast proto-
cols including local recovery [16], peer-to-peer recovery [24], randomized gossip-
style recovery [2] and NACK aggregation technique [9]. In particular, peer-to-peer
recovery approach, where each member peer communicates with other member
peers to recover lost packets, attracts our attention since it fits well with MANET
multicasting. In MANETs, the probability of location dependent random errors is
non-negligible due to wireless link error and node mobility. Therefore, unless all
the receivers have experienced the same loss pattern, it is highly likely that each
receiver shows heterogeneous packet reception characteristic. Thus peer members
can effectively rectify each other. Moreover, peer-to-peer recovery does not rely on
specific nodes (such as the source or designated agents), thus it is robust against
node and link failure and dynamic topology changes in the network. Lastly, peer-
to-peer recovery tends to evenly distribute recovery overhead to the entire group
instead of centralizing at certain nodes, and thus it shows better scalability than
source-oriented retransmission mechanism.

Applying peer-to-peer recovery in MANETs is however not straightforward. The
design choices underlying wired reliable multicast protocols using peer-to-peer re-
covery mechanism [2][24] are not apposite for MANETs due to their unique char-
acteristics including mobility, limited bandwidth, random packet errors, and fre-
quent outages. If these wired protocols are applied to MANETs directly, they will
incur excessive control overhead for maintaining underlying routing structure, and
also unreasonable long latency due to frequent route outages and heavily contended
broadcast medium.

Recently, Anonymous Gossip [4] and Route Driven Gossip [11] have customized
the gossip-style recovery schemes [2] to be fitted in wireless ad hoc networks. In
gossip-style approaches, the packet recovery is performed in a peer-to-peer fash-
ion. A receiver attempts to recover lost packets with the aid of a random set of
members in the group. In “Anonymous gossip” (AG) [4], each peer member sends
gossip-requests to local members with higher probability than to remote members.
In “Route Driven Gossip” (RDG) [11], each peer member reuses ad hoc unicast
routing path, and sends multiple requests to enhance recovery ratio. However, these
solutions are probabilistic and their effectiveness depends on member geographic
layout. In particular, if the group members are placed very sparsely and the reliabil-

2

ity of gossip-request and retransmission is poor, then these schemes incur the cost
of gossiping but fails to improve recovery in a significant way.

Our approach named Collaborative Opportunistic Recovery Algorithm (CORA)
seeks to achieve deterministic and localized peer-to-peer recovery which maximizes
recovery efficiency within bounded latency. In multi-hop wireless communications,
localized schemes are always more efficient than non-localized schemes with re-
spect to route outage, broadcast medium contention, and unpredictable wireless
link errors. The key component of CORA, namely Cached Packet Distance Vector
(CPDV) protocol, can deterministically locate the best/nearest copy of a lost packet
and localizes the recovery process to the greatest extent. Since CPDV is a distance
vector (DV) type scheme and enforces on-demand DV exchange, it incurs minimal
storage overhead and communication overhead.

The main contributions of this paper are: (1) a localized peer-to-peer recovery strat-
egy that can recover lost packets from the nearest node that stores a copy; (2) a
deterministic CPDV (cached packet distance vector) implementation that realizes
the previous goal; (3) a tradeoff study between localized recovery benefits versus
memory and processing overhead, and; (4) a mechanism to enforce delay bound
compliance.

There exists a spectrum of semantics of reliable multicast. At the one end, the
strictest reliable multicast semantics, 100% packet delivery guarantee, exists. Looser
reliability semantics may allow some packet losses but may have other require-
ments. Throughout this paper we use the term “reliable” or “reliability” to denote
a high packet delivery probability and the term “strong reliability” especially to
denote 100% packet delivery.

The rest of this paper is organized as follows. Related work follows in Section 2.
Section 3 illustrates the operation of CORA. In Section 4, we demonstrate our
contributions with the extensive simulation results. Finally, Section 5 concludes
this paper and discusses future work.

2 Related Work

This section briefly introduces related work focusing on local recovery and peer-
to-peer gossip-style approaches for reliable multicasting.

The idea of local recovery has been widely used in wired reliable multicast to re-
duce the overhead and improve the scalability. RMTP (Reliable Multicast Transport
Protocol [16] achieves local recovery based on a multi-level hierarchy of receivers.
In each local region, RMTP selects a Designated Receiver (DR) that caches re-

3

ceived data and recovers the lost packets of members in its local region. More
recently, RRMP (Randomized Reliable Multicast Protocol) [24] has applied previ-
ously proposed randomized peer-to-peer recovery [2] for effective local recovery.
RRMP groups receivers into a few regions based on geographical locality and let
each member to recover packets from receivers in local region and, with small
probability, from some receivers in remote region. Hierarchical recovery schemes
however is not suitable for a mobile network and therefore is not implemented in
CORA. CORA does rely on peer to peer recovery. It extends the peer to peer mod-
els to exploit the collaboration of non-member nodes in order to locate local peers.
As another difference from wired networks, CORA exploits the ”wireless broadcast
advantage” through promiscuous listening. Promiscuous listening allows a node to
acquire one-hop neighbors’ caching status and/or CPDV entries with zero transmis-
sion overhead. This design choice minimizes the communication overhead caused
by recovery traffic. It also reduces channel contention between recovery traffic and
ongoing multicast traffic.

As shown in [13], local recovery is indeed effective for reliable multicast protocols.
In particular, in MANETs where acquiring full topology or membership informa-
tion is challenging, a localized solution is desirable. In spite of its natural fitness of
local recovery in MANETs, surprisingly few multicast protocol customizing local
recovery in MANET has been developed. Reliable Adaptive Congestion controlled
Transport protocol (ReACT) [17], an extension of Reliable Adaptive Lightweight
Multicast (RALM) protocol [23], shows an example of attempts to explore local re-
covery in MANETs. Keeping the concept of existing local recovery approach that
exploits only members, ReAct proposes a simple local recovery in MANETs [17].
ReAct allows a member to locally recover lost packets only from its upstream mem-
ber nodes opportunistically discovered on the way back to the source, with no extra
effort to find “local” members as CORA does. Thus, the capability of local recovery
in ReAct is confined.

The concept of peer-to-peer recovery is not new. Anonymous Gossip [4] and Route
Driven Gossip [11] use randomized gossip-style recovery algorithm [2] to improve
multicast packet delivery ratio. AG and RDG propose solutions to efficiently locate
other members to send requests even with dynamic topology changes. Like CORA,
AG [4] involves non member nodes (specifically forwarding nodes in a multicast
tree) in the recovery process. However, only a forwarding node or member main-
tains distance metrics to possible reachable members from itself and exchanges its
distance metrics with neighbor forwarding nodes and members. RDG [11] explores
the underlying unicast routing table to select members (gossipers) for the recovery
request. A receiver sends a gossip request to multiple members towards which the
unicast routes are known. Leveraging unicast routing information helps RDG to im-
prove routing efficiency over AG. As a difference from CORA, recovery in both AG
and RDG is probabilistic and non-localized, thus may result in expensive and poten-
tially unproductive gossip trials over multihop wireless paths. EraMobile [14], an-
other gossip-style scheme proposed relatively recently, transmits gossip messages

4

only to physical neighbors, i.e., uses epidemic dissemination, to reduce the cost of
locating members for message exchanges. CORA is divergent from these random-
ized gossip approaches in that (1) it uses deterministic peer-to-peer recovery, and;
(2) attempts localized recovery to the greatest extent. CORA also introduces the
new concept of accounting for the applications’ specific demands such as bounded
latency.

Recently, coding approaches to reliable multicast in ad hoc networks are discussed
and evaluated [7][15]. In [7] it is shown that the use of a FEC (Forward Error
Correction) code, particularly Reed-Solomon codes, helps the underlying multicast
routing protocol’s packet delivery ratio and in [15] a network coding based protocol
was proposed.

3 CORA Protocol Design

It is extremely arduous to develop a reliable protocol which achieves both deter-
ministic reliability and bounded-delay guarantee in MANETs. In general, only the
second condition–bounded delay–is strictly demanded in most multimedia (e.g.,
audio or video) multicasting applications. Those applications favor bounded la-
tency over strong reliability (100% packet delivery). CORA is designed to support
multimedia applications and targets to maximize packet delivery ratio while sus-
taining bounded latency and minimizing recovery overhead. The design choices of
CORA rely on the observations of unique constraints of MANETs which are: (1)
High error rate and heavy recovery overhead: The error/loss rate (unrelated to con-
gestion) on wireless link varies over time and it may become unacceptable (e.g.,
above 40%) [5]; (2) Low cost of promiscuous listening: Shared and broadcast na-
ture of wireless medium allows all neighbors to promiscuously accept packets only
with negligible extra processing overhead; (3) High communication overhead and
comparably low storage/processing cost: Communication overhead is expensive
due to low bandwidth and limited power. Memory access and processing consume
much less energy than wireless transmissions, and memory resources are nowadays
relatively abundant on mobile nodes [6][10][19][22].

With these restrictions and characteristics, CORA trades off memory and process-
ing cost for communication overhead by employing cooperative neighbor nodes
keeping a short-term data cache and/or CPDV table. The basic mechanism of CORA
is a hybrid approach of localized peer-to-peer recovery and source-oriented retrans-
mission mechanism. Similar to the NACK aggregation technique used in IP multi-
casting [9][21], each intermediate forwarder in CORA, i.e., each router on the path
back to source, aggregates NACK messages to prevent the potential NACK implo-
sion problem. In this section we introduce CORA. The detailed description of the
protocol is presented in Appendix.

5

3.1 Cached Packet Distance Vector

CORA creates and maintains a consolidated recovery structure G′ for each multi-
cast group G. This structure G′ includes three sets of nodes, group members Gm ,
forwarding nodes Gf , and recovery assistant nodes Gra. The recovery assistants are
nodes that can hear the packets from a member node. Thus, G′ = Gm ∪ Gf ∪ Gra.
The selection of Gra will be further refined in Section 3.5. CORA imposes “short-
term data caching” at forwarding nodes and members such that each forwarding
node and member keeps the copy of incoming multicast data packets in the cache
CdataG for Tmax. A packet in the cache is to be retransmitted if a retransmission
request from a multicast receiver for the packet is received. Since a packet in the
cache stays only for Tmax, any retransmission request for the packet received after
Tmax + Ts (where Ts is the time when the packet is stored in the cache) is to be ig-
nored, i.e. no packet is transmitted for the retransmission request. We recommend
Tmax be a multiple of the round trip time (RTT) along the network diameter. The
rationale behind is that recovery (or retransmission) requests for a packet in one’s
local cache is expected to be received within a multiple of the RTT after the time
when the packet is stored. The time for a packet to travel from a node to a multicast
receiver and the time for a retransmission request to travel back from the receiver to
the node constitute an RTT. 1 Data caching at a member node is straightforward as
members must assemble the file anyway [11]. Data caching at forwarding nodes is
used to improve the success ratio of local recovery by redundancy and to suppress
unnecessary retransmissions at each forwarding node. In CORA, each node in G′

(promiscuously) listens to the multicast traffic, maintains Cached Packet Distance
Vector (CPDV) routing table for the group G (CPdvG), and makes available its
own CPDV table to other nodes to help recovering their lost packets within min-
imal distance and latency. The CPDV table keeps track of the min hop distance
and path to each cached packet sequence number. Unlike traditional distance vec-
tor schemes, CPDV implements content based addressing, i.e., the index is not a
destination address but a packet sequence number. Fig. 1 shows a simple illustra-
tion of CPDV. Node C stores min hop paths (of length = 1) to packets 1, 3, and 4.
Note that CORA/CPDV assumes that a multicast data packet can be distinguished
by a unique identifier, 〈source address sequence number〉, e.g., H1 stands for packet
number 1 from node H. The sequence number field is increased by 1 at the sender
for each new packet.

1 Considering the fact that the loss of a packet is detected when the next sequence packet
is received, it is better for a packet to be stored for Tmax after the next packet is received.
If traffic characteristics of the application are known a priori, a possible alternative for
Tmax is the deadline of packets, e.g., 3 seconds. Usual multimedia applications have delay
constraints. A packet received after its deadline, i.e., the delay constraint is violated, is
useless and only to be dropped. There is no need for packets to be recovered after their
deadlines and in turn there is no need for packets to be stored beyond the point when they
become useless.

6

Fig. 1. A sample scenario

CPDV is not updated proactively with explicit messages thus avoiding extra com-
munication overhead. Rather, CPDV routing information is obtained reactively and
opportunistically. CORA nodes exploit control message piggyback and promiscu-
ous listening to acquire CPDV routing information as follows: (1) By (over)hearing
a data packet, a node knows the packet sender has the packet; (2) Nodes can pig-
gyback their own CPDV metrics in control messages like NACKs. Other nodes
overhearing these control messages can compute appropriate CPDV metrics. The
piggyback communication overhead is small because each CPDV metric consumes
tiny space (8-bit hop count in our simulation).

CORA relies on an independently designed underlying multicast protocol that pro-
vides shortest paths to a source as part of a multicast tree (e.g., ODMRP (On De-
mand Multicast RoutingProtocol) [8] and MAODV (Multicast Ad Hoc On-Demand
Distance Vector) [18]). If such shortest path tree does not exist, it is often possible
to modify the underlying protocol to acquire it (e.g., MCEDAR (Multicast Core-
Extraction Distributed Ad hoc Routing) [20] and CAMP (Core-Assisted Mesh Pro-
tocol) [12]). Thus, CORA can run with any MANET multicast protocol that embeds
a source tree.

3.2 CORA Recovery Overview

Upon detection of a packet loss (e.g., a skipped sequence number) a multicast group
member initiates the loss recovery process which includes two sequential steps:

(1) Localized peer-to-peer recovery: A member first tries to recover missing pack-
ets in its locality. This procedure is further divided into three sequential sub-

7

steps:
(a) CPDV recovery: If the lost packet sequence number has a valid entry in

CPDV, the member initiates explicit request to the neighbor pointed in the
CPDV entry. The retrieval may require a few hops as directed by CPDV.

(b) Local query: For lost packets with invalid CPDV entries (i.e., CPDV met-
ric for that packet is∞), the member tries to collect CPDV entries for the
missing packets from one-hop neighbors. In the mean time, local query
also carries available CPDV entries at the member to distribute multicast
state information. This is implemented by an efficient QUERY/REPLY
handshake: the member broadcasts a short QUERY, and any neighbor
sends back a short reply (after a random backoff to prevent collisions) if
it has cached some of the lost packets or knows where they are. CPDV
update metrics are piggybacked in both query and reply messages.

(c) CPDV retry: CPDV recovery is performed again if there is no reply during
the local recovery step. There is no “second chance” (of local query) for
packets not recoverable from this retry.

(2) Source recovery: For packets still missing after the local recovery, the mem-
ber sends a NACK to its upstream node toward the source until all the lost
packets are recovered or the delay bound expires. In MANETs, the proba-
bility of packet loss is not negligible and thus a NACK for every single loss
may cause NACK implosion. To avoid the problem, NACKs are deferred, ag-
gregated, and paced at the receivers and redundant NACKs are suppressed at
intermediate nodes on their way to the source.

3.3 CORA Recovery Example

Example1: Fig. 1 illustrates an example of CORA recovery process for a single
multicast group. In the figure S is the source node, {B,G, H, I} are members of the
group, {A,E, F} are forwarding nodes or forwarders in the underlying multicast
protocol, and C is a recovery assistant. Two nodes within each other’s transmission
range are connected by a solid link if the link is in underlying multicast tree, or by
a dotted link otherwise.

The source S sends packets with sequence numbers from 1 to 4. The underlying
multicast protocol delivers them to members; some packets are lost. The bracket
beside a forwarder or a member represents the set of cached packets. The curly
bracket next to node C represents its most recent CPDV table, i.e., packets 1 and
4 are 1 hop away in the direction of H, packet 3 is 1 hop away in the direction of
E. We now briefly describe CORA recovery process on members H and G. Fig. 1
depicts the moment right before H starts recovery.

(1) H detects that packet 2 and 3 are lost. This time H’s CPDV recovery returns
no result. Later we will see other nodes, such as G, can take advantage of

8

CPDV recovery.
(2) H initiates its local query process. H locally broadcasts a QUERY to its neigh-

bor nodes. In the QUERY H piggybacks its CPDV metrics, that is, 0 for packet
1 and 4, ∞ for packet 2 and 3. All local nodes update their CPDV metrics for
packet 2 and 3 upon hearing this QUERY—there is no CPDV change on node
C and E, but G takes note that packet 1 is one hop away in the direction of H .

(3) Since E can recover packet 3 from its cache and C knows packet 3 is one
hop away in the direction of E, both E and C send back a short REPLY to
H . Choosing the best metric (1 for E < 2 for C), H now knows packet 3
is one hop away from E. H then unicasts an explicit REQUEST to recover
packet 3 from E. (It does not matter whether E is H’s upstream node or not.)
Obviously one QUERY may incur multiple replies. As a result, RTS/CTS (Re-
quest To Send/Clear To Send) based CSMA/CA (Carrier Sense Multiple Ac-
cess/Collision Avoidance) cannot be used. Therefore, in CSMA both query
and its replies must be short messages so that there is no significant perfor-
mance degradation due to hidden terminals.

(4) All nodes within two-hop range of H also update their CPDV metrics upon
hearing the replies. There is no CPDV change on node A, but B and F know
packet 4 is one hop away from E, G knows packet 3 is two hops away in the
direction of C.

(5) H is still missing packet 2; it thus enters the source recovery step. This results
in a NACK to its upstream node E. E cannot recover 2 and then sends a
NACK to its upstream node A. The same story repeats and finally S receives
the NACK. The source then retransmits packet 2 for H .

(6) NACK implosion due to multiple nodes’ simultaneous source recovery is
solved by NACK suppression on the multicast tree. Each NACK forwarder
sets the BC (“breadcrumb”) bit to 1, then resets it to 0 when the missing data
packet is returned. In this example, both E and A set their BC bits (for packet
2) during NACK forwarding. When packet 2 comes back from source S, both
A and E will cache it and locally re-broadcast it, then reset their BC bits to 0.

(7) H recovers packet 2 and its CORA recovery process ends if no further packet
loss is detected.

(8) Now G starts loss recovery. Its CPDV table knows that packet 1 is one hop
away from H and packet 3 is two hops away in the direction of C. Using
CPDV recovery G sends out explicit REQUESTs to H and E, respectively.
The same “breadcrumb” navigation technique is also used for each multi-hop
request because there may be multiple distributed members requesting the
same lost packet in the neighborhood.

(9) G enters local recovery process and issues a QUERY to recover packet 2.
By H and C’s REPLY (C knows packet 2 is one-hop away from H when E
rebroadcasts it in H’s source recovery phase), all nodes within two-hop range
of G update their CPDV metrics.

(10) Finally G sends an explicit REQUEST to H and recovers packet 2.

9

3.4 CORA Packet Type

As seen in the above example, CORA implements six different packet types listed
below.

(1) DATA: DATA packets deliver application data. In CORA, each data packet is
identified by

〈G,S, seqNo〉,

where G is multicast group address, S is data source address, and seqNo is data
packet sequence number. We use 〈S, seqNo〉 as packet ID in each multicast group.

(2) QUERY: QUERY packets are used for local query. A member broadcasts a
QUERY control message to collect CPDV of lost data packets and meanwhile
to advertise its CPDV metrics.

(3) NACK: NACK packets are used for source recovery. A member sends a NACK
control message toward the source to complain lost data packets and mean-
while to advertise its CPDV metrics.

(4) REPLY: Upon receiving a QUERY packet, a node sends back a REPLY con-
trol message if (1) the node has cached some of the lost data packets, or (2)
the node can locate some of the lost packets in its local CPDV routing table.

(5) REQUEST: This packet is used to request data packet “retransmission” to
a node which has the packet in local recovery. When a member can locate
some lost packets using its CPDV entries, it unicasts REQUEST packets to
the corresponding next-stops.

(6) REJECT: When a CORA node cannot forward REQUEST packet due to in-
valid CPDV entry, it optionally sends back a REJECT message to flush the
related CPDV routing tables.

The packet format of a NACK, QUERY or REPLY packet is:

TY PE G S SND RCV seqNo [DV]

4-bit 32-bit 32-bit 32-bit 32-bit 32-bit N-unit

where TY PE is the packet type, NACK, QUERY or REPLY; G is the multicast group
address; S is the source address of the application session; SND is the packet sender’s
address; RCV is the packet receiver’s address, e.g., a broadcast address in a QUERY or
the multicast upstream node toward the source in a NACK; seqNo is the data sequence
number of the first lost packet; and [DV] is a fixed field for piggybacking distance vector
advertisement. In the [DV] field, the i-th unit [DV (i)] is the distance metric about packet
ID 〈S, seqNo+ i〉 copied from the sender’s CPDV table. If no route is known to the sender
about packet ID 〈S, seqNo + i〉, then the i-th unit [DV (i)] is set to ∞.

Note that a CORA node does not aggregate multiple NACKs for different sources
or groups, i.e., the recovery process is separately performed for each source and
group. Thus the extension of recovery process to multiple group and sources is

10

(a) An example of optimization scenario (b) Cases of recovery assistant nodes

(c) Optimized recovery structure

Fig. 2. CORA refinements/optimizations

straightforward.

3.5 Algorithm Refinements

We further refine CORA to reduce memory and process overhead at non-member
nodes. The basic CORA scheme volunteers all nodes which can overhear multicast
transmission as recovery assistant (RA) nodes. This simple solution can lead to
unnecessary caching and process overhead at a node where CPDV is not of service
to any member’s recovery process. For instance, in Fig. 2(a) CPDV maintained
at node O does not help any member’s recovery. Only a member can request a
CPDV at a RA node. Thus, a node without any neighbor member does not qualify
as RA. In Fig. 2(b) we further analyze the cases where RA’s CPDV may help the
recovery. Case I: the RA connects a member to at least one forwarding node or
another member which is not the direct upstream node (i.e., parent) in the multicast
tree (example: nodes C and I). RA nodes satisfying this case allow a member to
access data cache and CPDV of a forwarding node or a member within two hops
away. Going back to Fig. 2(a), nodes G and K do not qualify as they hear both
a member and its upstream. Case II: a node becomes RA if it has at least one
member and another RA as neighbors. In this case, two intermediate RA nodes
can connect two members which are up to three hops away. Two members more

11

than three hops away each other can opportunistically exchange state information
through combinations of these two cases. For instance, in Fig. 2(a), CPDV entries
of member A may be propagated to member M along the path A-C-H-I-M.

To support these refinements, CORA exploits the underlying multicast routing pro-
tocol. In this section we explain the CORA refinements based on ODMRP. In
ODMRP, the data source establishes and updates group membership and multi-
cast routes on demand. ODMRP uses Query and Reply phases to construct a mul-
ticast structure. While a multicast source has packets to send, it floods member-
advertising packets, called Join Query, periodically. The periodic floods of the Join
Query packet refresh the membership information and update the routes. When the
Join Query packet reaches a multicast receiver, the receiver sends back a Join Re-
ply to the source through the reverse path. A node N , say, which is not a member
nor forwarding node, becomes a candidate RA if it overhears “Join Reply” from
a neighbor member (say M). Candidate RA N remembers B the direct upstream
node of M . If N hears a “Join Reply” packet or a multicast data packet from any
other neighbor that is not B (i.e., there is another forwarding node or member
among neighbors), N becomes RA and sets RA FLAG. Consistent with the soft
state principle of ODMRP, an RA node resets RA FLAG if timer expires before
refresh. In the example in Fig. 2(c), this scheme excludes node O, N and G from
RA qualification.

4 Performance Simulation Study

In this section we investigate CORA behavior under various conditions using Qual-
Net [1]. Our simulation study consists of two parts. The first is performance com-
parison of CORA with existing schemes and the second is evaluating performance
impact of specific CORA design features (e.g., CPDV, refinements, etc).

4.1 Simulation Model

To perform a simulation study, we have implemented CORA in QualNet and we use
ODMRP as the underlying ad hoc multicast routing protocol. In our simulations,
ODMRP sends Join Query every 3 seconds. MAC(Media Access Control) is 802.11
DCF(Distributed Coordination Function). Radio propagation follows the two-ray
ground path-loss model. A node’s transmission range and bandwidth is 376m and
2Mbits/sec, respectively. Each simulation scenario uses 100 nodes randomly placed
on a 1500 × 1500 m2 field and lasts 200 seconds. All the results are averaged
over 10 runs with various random seeds. We use recovery bound = 12 seconds
and assume that maximum recovery delay is 6 seconds. Thus, CORA attempts to
recover a lost packet up to Tbound = 6 seconds after the loss is detected. Also, we use

12

Group size 5 10 15 20 25 30

Avg Distance 2.84 2.55 2.27 1.92 1.85 1.80

Src recovery 0.67 0.39 0.27 0.23 0.13 0.09
Table 1
Average recovery distance & probability of source retransmission of a packet

N = 32, thus each NACK carries route information about 32 consecutive packets.
For timeout values, we use Tnack = 3 seconds, Tcpdv = 0.5 seconds, Tlocal = 0.3
seconds and Tsource = 4 seconds. We use the maximum numTry = 2, thus a NACK
will be (re)transmitted toward the source at most two times. We assume that each
node has at least 40 Kbytes space for the CPDV table(s) which can contain about
1000 entries (with Tmax = 20S and maximum number of (over)heard multicast
packets per second is 100).

4.2 Performance comparison study with other protocols

In this section, we evaluate the recovery process of CORA compared to existing
reliable multicast protocols in a static network with lossy channel (due to random
errors). We compare CORA with GOSSIP, RALM and UDP.

GOSSIP: We implement a simple gossip-style recovery algorithm to compare the
efficiency of peer-to-peer random recovery approach to CORA deterministic ap-
proach. In GOSSIP, a member periodically sends gossip request (if there is any
packet loss) to another randomly chosen member. GOSSIP assumes that each mem-
ber caches incoming data packets. Upon receiving a gossip-request, the member re-
transmits the missing packets available in its data cache. In the simulation, a mem-
ber can issue a new gossip request every 3 seconds. Note that we use static routes
among members to avoid routing overhead. Thus, the extra overhead of GOSSIP
accounts only for gossip request and retransmitted data packets.

RALM (Reliable Ad hoc Lightweight Multicast) [23]: RALM is a source-oriented
retransmission mechanism where a source retransmits the lost packets using a NACK/ACK
scheme. When a node detects the packet loss(es), it transmits a NACK to the source
without local recovery attempt. Once the source receives the NACKs, it restores the
lost packets to each requester (a source picks up one requester at a time in a round-
robin fashion for the recovery) and verifies recovery from the ACK received from
each requester.

UDP: As a reference, we compare CORA with UDP which does not incorporate
any recovery scheme.

Through this experiment, we assume a single multicast group of variable size (from
5 to 30 nodes), with a single source. The traffic load if very light, so no loss is

13

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 10 15 20 25 30

D
el

iv
er

y
R

at
io

Number of Members

RALM
CORA

GOSSIP
UDP

(a) Delivery ratio

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30

N
or

m
al

iz
ed

 c
tr

l O
H

Number of Members

RALM
GOSSIP

CORA
UDP

(b) Normalized control overhead (Total number of transmitted
packets divided by total number of delivered packets)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30

E
nd

-t
o-

en
d

D
el

ay
 (

s)

Number of Members

GOSSIP
CORA
RALM

UDP

(c) End-to-end packet latency

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
by

te
s/

se
c)

Number of Members

CORA
GOSSIP

UDP
RALM

(d) Throughput

Fig. 3. Results in static scenarios with random error

14

caused by congestion. All losses are caused by random interference or by mobil-
ity (if any). The traffic source is a CBR (Constant Bit Rate) application with 5
Kbytes/sec rate using 512 bytes fixed packet size. We use scenarios with static
nodes, i.e., no mobility, and simulate random errors by randomly dropping the
packet upon receiving a packet at the MAC layer. Whenever a new packet comes
in, each node decides whether it will accept or drop the packet based on the given
error probability. We use the byte error rate at each link 10−4 and thus the p with a
packet of 512 bytes size becomes approximately 0.05.

The results shown in Fig. 3 demonstrate the efficacy of CORA compared to other
protocols. First, CORA vs UDP. CORA improves the delivery ratio and throughput
compared to UDP with very small (less than 10%) extra overhead. In fact, the ex-
tra overhead of CORA decreases as the number of members increases because the
capability of NACK/retransmission aggregation increases. As the group becomes
denser, the success probability of local recovery will grow. Table 1 shows the av-
erage distance of the transmission of a recovered packet and the probability of the
recovered packet retransmitted from the source. The average distance of a recov-
ered packet is less than 2 (recovered within two hops away), and less than 25%
of packets are recovered from the source and more than 75% of the recovery is
performed locally with more than 20 receivers and keeps decreasing with group
size.

Secondly, CORA vs GOSSIP. The recovery efficiency of CORA is better than that
of GOSSIP. As shown in Fig. 3(b), the control overhead of CORA is lower than that
of GOSSIP. Also, CORA achieves higher delivery ratio and lower average packet
latency than GOSSIP as shown in Fig. 3(a) and 3(c). In fact, the delivery ratio of
GOSSIP slightly degrades with group size due to the increase of control overhead.
This implies that CORA is more scalable to the group size than GOSSIP approach
because of efficient CPDV mechanism.

Lastly, CORA vs RALM. Our results show that RALM is not suitable for con-
stant bit rate applications such as periodic dissemination and fixed rate multimedia.
Since RALM is designed for 100% reliability, it favors reliability over throughput
and overhead and incorporates TCP-like congestion control where a RALM source
reduces the transmission rate upon receiving NACK messages from receivers. As a
result, RALM achieves lower latency and higher packet delivery ratio than CORA,
but it suffers from significantly degraded throughput as shown in Fig. 3(d). Notably,
even with far better throughput, CORA achieves delivery ratio and end-to-end la-
tency comparable to RALM.

15

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5 10 15 20 25 30

D
el

iv
er

y
R

at
io

Mobility (meter/sec)

CORA
CORA/OPT
CORA/SRC

CORA/NACK

(a) Delivery ratio

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

 5 10 15 20 25 30

N
or

m
al

iz
ed

 c
tr

l O
H

Mobility (meter/sec)

CORA
CORA/OPT
CORA/SRC

CORA/NACK

(b) Normalized Control Overhead

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30

N
or

m
al

iz
ed

 M
em

or
y

O
H

 (
B

yt
es

)

Mobility (meter/sec)

CORA
CORA/OPT
CORA/SRC

CORA/NACK

(c) Normalized Memory Overhead (Total memory access in bytes
divided by total number of received packets)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20 25 30N
or

m
al

iz
ed

 P
ro

ce
ss

in
g

O
H

 (
B

yt
es

)

Mobility (meter/sec)

CORA
CORA/OPT
CORA/SRC

CORA/NACK

(d) Normalized Processing Overhead (Total processed extra con-
trol packets in bytes divided by total number of received packets)

Fig. 4. Results in mobile scenarios

16

4.3 Performance study of CORA components

In the second experiment, we evaluate the benefits introduced by key CORA design
features, namely, CPDV mechanism, data cache at forwarding nodes and optimiza-
tion/refinement scheme. We compare CORA with (1) CORA/SRC: CORA without
CPDV mechanism (no local recovery) so that only NACK aggregation and data re-
covery at forwarding nodes on the source tree are used; (2) CORA/NACK: same as
CORA/SRC, but without data caching at forwarding nodes. Thus, only NACK-
aggregation technique is used with end to end retransmission; (3) CORA/OPT:
CORA with the earlier mentioned optimization/refinement technique.

For this experiment, we use node mobility without random error where each node
moves following random-way point model with min speed “0” and max speed “x”(x
= 5 to 30 meter/sec) and 0 pause time. A single group with a source and 10 group
members is used in this case.

Fig. 4 illustrates the comparison results. First, Fig. 4(a) shows that localized CPDV
directed recovery in CORA greatly improves robustness to mobility as compared
to CORA/SRC and CORA/NACK. This is explained by the fact that the CPDV
scheme allows each receiver to recover packets from the nearest point so that the
success probability of retransmission can be maximized. This is probably the most
important result of this batch. Since CPDV recovery is the most unique feature of
CORA, this result tells us that there is significant advantage in using it.

The second result is a sort of negative result. It tells us that the performance gain by
data cache at forwarding nodes, i.e., performance difference between CORA/SRC
and CORA/NACK, is not significant. So, if CPDV is not implemented, it may not
be critical to cache packets at non member (forwarding) nodes. Since ODMRP
periodically reconstructs the multicast structure and reselects the forwarding nodes
following a topology change, cached data packets at old forwarding nodes are “out
of reach”. Data caching at forwarding nodes is still very helpful for local recovery
and CPDV.

Thirdly, the results show that CORA/OPT manages to maintain the same delivery
ratio as CORA yet reducing memory and process overhead. In fact, the optimiza-
tion scheme reduces process overhead of CORA up to 25% as shown in Fig. 4(d).
By eliminating unnecessary recovery assistant nodes, CORA/OPT further reduces
redundant REPLYs and thus slightly lessens extra communication overhead.

17

5 Conclusions and Future Work

In this paper, we presented Collaborative Opportunistic Recovery Algorithm (CORA),
a controlled loss, bounded delay multicast protocol. CORA applies to multicast
sources with a fixed data rate. It attempts to minimize packet loss rate by exploiting
local recovery, with bounds on latency and overhead. The centerpiece of CORA
is an efficient local recovery mechanism based on Cached Packet Distance Vector
(CPDV). Simulation studies clearly demonstrate the efficacy of CPDV and CORA
compared to other reliable multicast approaches.

In the future, we plan to extend the CORA design to handle issues that are critical in
multicast applications. The first issue is congestion control. MANETs are extremely
sensitive to overload. The multicast mode of operation is particularly exposed to
this problem since it lacks a TCP like end to end congestion control mechanism.
In this study we assumed that the source rate was fixed a priori, based on careful
engineering of resource allocations. In practice, the a priori resource allocation is
difficult at best in a mobile environment. Moreover, an increasing number of appli-
cations allow the adjustment of the source rate to match network conditions (e.g.,
delay tolerant data delivery, adaptive coded video sources, adaptive resolution data
dissemination, etc). It is thus appropriate to develop an extension of CORA that
includes source rate adaptation based on end-to-end and network feedback.

The interpretation of network feedback, however, presents its own challenges. A
well known challenge in MANETs is the ability to discriminate losses due to con-
gestion from errors caused by link breakage and random interference/jamming.
This issue is essential for schemes where feedback from destinations is used to de-
termine the source transmission rate. A source should reduce the rate only if the
loss is indeed due to congestion. The local recovery of CORA recovers well from
random type packet losses due to motion and channel error. In case of wide spread
congestion, local recovery does not work and NACK packets will be delivered to
the source. Thus, feedback that reaches the source is likely indication of network
congestion. We are planning to work on a congestion control scheme which utilizes
this implicit loss discrimination feature by CORA.

Local recovery, however, has its limits in recovery from random errors. Source
coding (e.g., erasure codes) can also significantly improve packet delivery rate [3].
Moreover, source coding eliminates the repeated retransmission of a conventional
recovery scheme and thus might be more suitable for multimedia applications with
critical delay constraints. In future extensions of CORA, we will consider mixed
traffic environments, with multicast sources with different ranges of delivery ra-
tio and latency requirements. One of the challenges will be the judicious tradeoff
between recovery and source coding.

CORA/CPDV uses a single routing metric, hop count. That is, a lost packet is

18

recovered, if possible, using the shortest path. However, the shortest path is not
necessarily the best path in term of recoverability in MANETs. Other metrics that
represent reliability, stability, throughput of paths may be better ones. In the future,
we plan to adopt or develop other routing metrics that can be used in CORA/CPDV.

Finally, since Tmax, the time duration for which a packet is to be stored in the
cache, is a parameter that can affect the performance of CORA, one of the imme-
diate future works is a simulation study of the impact of Tmax value on the CORA
performance and to find out the best value for Tmax. Although, Tmax was recom-
mended be the RTT along the network diameter, since the RTT along the network
diameter is difficult to estimate considering the dynamics of MANETs, we plan to
develop an algorithm finding a proper value of Tmax in the future.

Acknowledgements

This work was supported in part by the National Science Foundation under Grant
No. 0520332, the US Army under MURI award W911NF-05-1-0246, and the U.S.
Army Research Laboratory and the U.K. Ministry of Defence under Agreement
Number W911NF-06-3-0001. The views and conclusions contained in this docu-
ment are those of the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the National Science Foundation,
the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

References

[1] Scalable networks, http://www.scalable-networks.com.

[2] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Transactions on Computer Systems, 17(2):41–88, 1999.

[3] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain Approach to
Reliable Distribution of Bulk Data. In Proceedings of ACM SIGCOMM, pages 56–67,
1998.

[4] R. Chandra, V. Ramasubramanian, and K. P. Birman. Anonymous Gossip: Improving
Multicast Reliability in Mobile Ad-Hoc Networks. In Proceedings of ICDCS, pages
275–283, 2001.

[5] D. S. J. DeCouto, D. Aguayo, B. A. Chambers, and R. Morris. Effects of loss rate on
ad hoc wireless routing. technical report MIT-LCS-TR-836, March 2002.

19

[6] L. M. Feeney and M. Nilsson. Investigating the Energy Consumption of a Wireless
Network Interface in an Ad Hoc Networking Environment. In Proceedings of IEEE
INFOCOM, 2001.

[7] D. Koutsonikolas and Y. C. Hu. The case for fec-based reliable multicast in wireless
mesh networks. In Proceedings of IEE/IFIP DSN, 2007.

[8] S.-J. Lee, W. Su, and M. Gerla. On-demand multicast routing protocol in multihop
wireless mobile networks. ACM/Kluwer Mobile Networks and Applications, special
issue on Multipoint Communications in Wireless Mobile Networks, 2002.

[9] B. Levine and J. Garcia-Luna-Aceves. Improving Internet Multicast with Routing
Labels. In Proceedings of IEEE ICNP, pages 241–250, 1997.

[10] J. R. Lorch and A. J. Smith. Software Strategies for Portable Computer Energy
Management. IEEE Personal Communications Magazine, 5(3):60–73, 1998.

[11] J. Luo, P. T. Eugster, and J.-P. Hubaux. Route Driven Gossip: Probabilistic Reliable
Multicast in Ad Hoc Networks. In Proceedings of IEEE INFOCOM, 2003.

[12] E. L. Madruga and J. J. Garcia-Luna-Aceves. Scalable Multicasting: The Core-
Assisted Mesh Protocol. ACM/Baltzer Mobile Networks and Applications, Special
Issue on Management of Mobility, 6(2):151–165, 2001.

[13] J. Nonnenmacher, M. S. Lacher, M. Jung, E. Biersack, and G. Carle. How bad is
reliable multicast without local recovery. In Proceedings of IEEE INFOCOM, 1998.

[14] O. Ozkasap, Z. Genc, and E. Atsan. Epidemic-based Approaches for Reliable
Multicast in Mobile Ad Hoc Networks. SIGOPS Oper. Syst. Rev., 40(3):73–79, 2006.

[15] J.-S. Park, D. S. Lun, Y. Yi, M. Gerla, and M. Médard. Codecast: A network coding
based ad hoc multicast protocol. IEEE Wireless Communications, 13(5), 2006.

[16] S. Paul, K. K. Sabnani, and S. B. J. C. Lin. Reliable Multicast Transport Protocol
(RMTP). IEEE Journal on Selected Areas in Communications, 15(3):407–421, 1997.

[17] V. Rajendran, K. Obraczka, Y. Yi, S.-J. Lee, K. Tang, and M. Gerla. Combining source
and localized recovery to achieve reliable multicast in multi-hop ad hoc networks. In
Proceedings of IFIP Networking, 2004.

[18] E. M. Royer and C. E. Perkins. Multicast operation of the ad-hoc on-demand distance
vector routing protocol. In Proceedings of ACM/IEEE MOBICOM, 1999.

[19] E. Shih, P. Bahl, and M. Sinclair. Wake on Wireless: An Event Driven Energy Saving
Strategy for Battery Operated Devices. In Proceedings of ACM MOBICOM, pages
160–171, 2002.

[20] P. Sinha, R. Sivakumar, and V. Bharghavan. MCEDAR: Multicast Core Extraction
Distributed Ad-hoc Routing. In Proceedings of IEEE WCNC, 1999.

[21] T. Speakman, D. Farinacci, and et. Al. PGM Reliable Transport Protocol Specification.
IETF Internet Draft, draft-speakman-pgm-spec-05.txt, November 2000.

20

[22] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network
interfaces in hand-held devices. IEICE Transactions on Communications, E80-
B(8):1125–1131, 1997.

[23] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla. Reliable Adaptive Lightweight
Multicast Protocol. In Proceedings of IEEE ICC, 2003.

[24] Z. Xiao and K. Birman. A randomized error recovery algorithm for reliable multicast.
In Proceedings of IEEE INFOCOM, 2001.

21

APPENDIX: Detailed Protocol Design

CORA works in two phases: multicast forwarding and loss recovery. In the first
phase, while the source sends data packets using any underlying unreliable mul-
ticast protocol, CORA maintains CPDV and data cache. Upon detecting packet
loss(es), a multicast group member initiates loss recovery process. For sake of sim-
plicity, we explain the recovery process of packets from a single source S in a
multicast group G. Pkt(k) refers to a source packet with sequence number k here-
after.

Phase I. Multicast Forwarding

In multicast forwarding phase, every node in G′ maintains a CPDV table and every
node in the multicast tree G keeps a short-term data cache for the multicast group
G.

Each CPDV entry has the format:

packetID = (S, seqNo) nextStop D Ts BC

32-bit 32-bit 32-bit 8-bit 32-bit 1-bit

where packetID is the key column identifying each lost packet; nextStop is the best-
known next stop’s address to reach the destination which caches the data packet identified
by packetID; D is distance metric in distance vector schemes (hop count in our simu-
lation); Ts is timestamp, so that an entry is recycled after timeout Tmax; and BC (“bread
crumb” bit) indicates that the current node is on the recovery forwarding path of the missing
packet, thus upon receiving the needed packet the node should rebroadcast it to its neigh-
bors. Using BC flag, each node forwards only once the REQUEST or NACK for a packet.
When the BC bit for a packet is set, a node needs not to forward duplicate NACKs or
REQUESTs for the packet. Also by this implicit aggregation mechanism, when the needed
data packet comes back, the forwarder uses wireless broadcast rather than multiple unicasts
to serve multiple members waiting for the same lost data packet.

Upon (over)hearing a new DATA packet

Pd = < G, S, i > at node na from node nb on time ts

if na ∈ G //I am a member or forwarding node

CdataG = CdataG ∪ Pd //add data to cache

PDVG = PDVG ∪ 〈S, i,na, 0, ts, 0〉 //add PDV entry

else if na ∈ Gra //I am a recovery assistant node

PDVG = PDVG ∪ 〈S, i,nb, 1, ts, 0〉 //add PDV entry

Remove old data cache and PDV entry

The pseudo code of CPDV and data cache maintenance is illustrated above. Upon
(over)hearing a packet, a member or forwarding node keeps the packet in its data

22

cache and adds a new CPDV entry with distance = 0. A non-forwarding/member
node only updates its CPDV entry with distance without data caching for a over-
heard data packet.

Phase II. Recovery Process

Upon detecting packet loss(es), a multicast group member initiates loss recovery
process which consists of following sequential steps. The pseudo code for loss
recovery is presented at the end of this section.

CPDV recovery

A member sends a unicast REQUEST message for Pkt(k) if the entry for Pkt(k)
is found in its CPDV. If several lost packets have the same next-stop (next hop)
in the CPDV routing table, the member aggregates multiple requests into a single
REQUEST packet for each next-stop. Note that CPDV recovery can be performed
right after a member acquires a CPDV entry for the lost packet without deferring.
For each REQUEST forwarder selected by distance vector routing, if for some rea-
son the forwarder has recently cached the needed packet Pkt(k), it directly sends
back the data packet without further forwarding REQUEST. If the forwarder cannot
forward the REQUEST because the route is removed from its CPDV due to timeout
Tmax, or because the network is partitioned, it optionally sends a REJECT message
to the original requester. Otherwise, it forwards the REQUEST and sets BC = 1 in
its CPDV table entry for Pkt(k).

After sending/forwarding a REQUEST, the sender/forwarder waits for the needed
data packet using a timeout Tcpdv (set to 0.5 second in our simulation). If the needed
data packet is not received within the timeout or a REJECT message is received,
the sender/forwarder removes the route entry from its CPDV table and/or resets
BC bit to 0.

Local Query

In local query, a member na collects new CPDV entries available at one hop neigh-
bor nodes and advertises its own CPDV entries at the same time. A member na

broadcasts a QUERY packet to neighbor nodes and waits Tlocal (set to 0.3 second
in our simulation) for REPLYes from neighbors. Let k be the starting sequence
number of the lost packets being recovered at this recovery process. To advertise
both lost packets and available CPDV entries, na uses [DV] field in QUERY for
packets identified by sequence number [k..k+N]. If no route is known to na about
packet ID 〈S, k + i〉 (i.e., the lost packet), then the i-th unit [DV (i)] is set to ∞.

23

A neighbor node knowing route information or caching some of the lost packets
sends a REPLY to na. As we described previously, the REPLY packet includes a
[DV] vector for packets identified by sequence number [seqNo, seqNo+N] where
seqNo =k is copied from the QUERY message.

Similar to CSMA/CA RTS/CTS handshake’s coverage area, which includes both
RTS sender’s neighborhood and CTS replier’s neighborhood, a QUERY and its
multiple REPLY messages cover two hops away from the requester na. Therefore,
some two-hop neighbors of the requester na can obtain CPDV routing informa-
tion for all packets within the range [k..k + N]. This design is efficient for three
reasons. (1) Like RTS/CTS handshake in CSMA/CA, QUERY/REPLY handshake
uses short packets in wireless transmissions. The communication overhead of such
CPDV exchange is the N ∗ 8 bits [DV] list, which is negligible for a reasonable
N value. Because one QUERY can be heard by multiple local nodes, there are
potentially multiple replies. As CSMA/CA cannot be used in the one-QUERY-
many-REPLIES handshake, two replies are vulnerable to CSMA hidden-terminal
problem if the transmissions (e.g., data transmission) are long. In contrast, it is
well-known that CSMA is much more efficient when multiple short transmissions
are competing the channel. Therefore, even though some one-hop neighbors can
recover some needed packets from their caches, CORA chooses to send back short
REPLY control packets rather than longer data packets. (2) With reasonable net-
work density and number of members, there are more intermediate forwarders and
members by two hops away. Since receivers often exhibit heterogeneous packet re-
ceptions, the two-hop neighbors likely have more packets needed by the requester
na.

Whenever a node in G′ (over)hears a QUERY or an REPLY, its CPDV table is up-
dated accordingly following DV routing mechanism. Once Tlocal timer expires and
na has acquired new CPDV entries for missing packets, it retries CPDV recovery.
If all packets are recovered (note that packets with valid CPDV entries are treated
as recovered), the recovery process ends. Otherwise, Source recovery is invoked.

Source recovery

For packets which are not recovered by local recovery, a NACK will be sent to the
previous hop toward the source following the source-based multicast structure built
by the underlying multicast protocol.

NACK implosion problem is exacerbated in MANET since the probability of packet
loss is not negligible. To alleviate the problem, we first pace NACK transmissions
at the receivers. A NACK can be deferred, for example, Pkt(k) is NACKed only
when k≤(seqNonew − N), where seqNonew is the newest sequence number re-
ceived from S and N is currently 32 defined in [DV] field. Also CORA regulates
the NACKs by limiting the frequency of NACKs and bounding recovery latency.

24

Thus, a member should wait Tnack after previous NACK before issuing another
NACK if the previous recovery process is still on-going. Moreover, a node can is-
sue an NACK for a lost packet only within finite time Tbound after the point when
the loss for the packet is detected. If a node cannot issue a NACK within Tbound due
to the limited NACK frequency, which is generally caused by high loss rate and
network congestion, it does not attempt to recover the packet.

Secondly, Each upstream node nb = RCV performs NACK suppression by (1) dis-
carding redundant NACKs, i.e., NACKs for the same data packet; (2) recovering
lost packets available in data cache. If the local BC bits for all lost packets de-
picted in a NACK is set to 1, i.e., requests have been already sent for the packets,
then the NACK will be discarded. Again, each NACK forwarder sets local BC bits
to 1 for all data packets that a NACK request to retransmit and resets to 0 when it
actually receives and transmits those data packets. If the upstream node can recover
some packets in its data cache, it treats these packets as recovered and broadcasts
these packets. The neighbor nodes, following BC bit, will forward the packets by
rebroadcasting them until the needed packets reach the requesters.

For requests not suppressed, the upstream node inserts a new CPDV entry with BC
set to 1. For instance, the i-th unit in the NACK is unknown ([DV (i)] = ∞) and the
request for Pkt(seqNo+ i) is not suppressed, then the upstream node inserts a new
entry 〈(S, seqNo + i), NULL,∞, 0, 1〉 with BC set to 1. Note that if there is an
CPDV entry for 〈(S, seqNo+ i)〉 with BC = 0, then it overwrites the old one. If all
packets are recovered at the node, then this node stops forwarding the NACK to the
source. Otherwise, the node updates the SND, RCV , and [DV] fields in NACK
based on its CPDV table, then forwards the NACK to its upstream node again.

This forwarding procedure is repeated until the source receives the NACK. The
source, like other upstream nodes, locally broadcasts the lost data packets upon
receiving a NACK, and the neighbor node with BC = 1 will rebroadcasts the data
packets until these packets reach the member requesters.

After sending an NACK, each receiver sets a timer Tsource ∗ Tbackoff . After each
timeout, it retries the source recovery procedure and doubles the backoff time
Tbackoff . After a few retrials, a receiver gives up the recovery. We use very small
number of retrials (e.g., 2) to keep the recovery overhead low.

Like QUERY packet, NACK packet also carries CPDV entries using [DV] field.
Thus, a node in G′ (over)hearing a NACK packet accordingly updates its CPDV.

The pseudo code for loss recovery

25

Loss recovery procedure at member node na for the packet Pkt(k) where k≤(seqNonew −N)

(1) Performing CPDV recovery

if Pkt(k) 6∈CdataG & CPdv(k) ∈CPdvG //Pkt(k) is lost and and CPDV entry is found

SendRequest(G,S,k, CPdv(k).nextStop) //REQUEST pkt

Set Tcpdv timer

Upon Tcpdv timer expires

// Invalidate CPDV entry CPdv(k) if Pkt(k) is not recovered yet

(2) Performing local query with starting seqNo = k //Excute every Tnack or no current loss recovery process running

QUERY.seqNo = k //set seqNo

for each i = 0 to N − 1

if Pkt(k + i) 6∈CdataG& invalid CPdv(k + i) // no CPDV entry for Pkt(k+i)

QUERY.DV[i] =∞ //set DV invalid

NeedToQuery = TRUE //need to send QUERY

else

QUERY.DV[i] = CPdv(k + i) //advertise CPDV for Pkt(k+i)

if NeedToQuery == TRUE //send Query

SendQuery(G,S,k) //send query to neighbors

Set Tlocal timer

Upon receiving a REPLY with seqNo = k

//Update CPDV table

Upon Tlocal timer expires

Retry CPDV recovery if new CPDV entries are acquired and treat those as recovered

(3) Performing source recovery with starting seqNo = k′ //Excute only after local recovery fails

for each i = 0 to N − 1

if Pkt(k′ + i) 6∈CdataG & invalid Pkt(k′ + i) //packet is lost and CPDV entry is not valid

NACK.DV[i] =∞ //set DV invalid

NeedToNack = TRUE

else

NACK.DV[i] = CPdv(k + i).D //advertise CPDV for Pkt(k+i)

if NeedToNack == TRUE

SendNack(G,S,k’) //to upstream node

Set Tnack timer

26

Loss recovery at a RA/member/forwarding node nb upon receiving a packet from a node

Upon receiving a REQUEST for Pkt(k)

if Pkt(k)∈CdataG //cached data

Retransmit(G,S,k) //broadcast retransmission

else if CPdv(k)∈CPdvG //CPDV entry found

if CPdv(k).BC == FALSE //BC flag is not set

CPdv(k).BC = TRUE //set BC flag to forward

ForwardRequest(G,S,k, CPdv(i).nextStop) //forward REQUEST following CPDV entry

Set Tcpdv timer

else ignore //the retransmission request for the packet has been already made

Upon receiving a QUERY with seqNo = k

Update CPDV table

for each i = 0 to N − 1

if Pkt(k + i)∈CPdvG //some packets can be recovered

QUERY.DV[i] = CPdv(k+i).D //send DV entry

if QUERY.DV[i] ==∞ //Pkt(k+i) is lost/requested

NeedToReply = TRUE //need to send reply

else // not in CPDV

QUERY.DV[i] =∞
if NeedToReply == TRUE & myID 6= QUERY.SRC //has new DV info and I am not the source

SendReply(G,S,k, nc) //send reply

else ignore QUERY and return //no new CPDV information

Upon receiving/overhearing a REPLY with seqNo = k

//Update CPDV table

Upon receiving/overhearing a NACK with seqNo =k

Update CPDV table

if NACK.RCV 6= myId //I am not the upstream node

drop NACK and return

for each i = 0 to N − 1

if NACK.DV[i]==∞ & Pkt(k + i)∈CdataG

Retransmit(G,S, k+i) //broadcast retransmission

NACK.DV[i] = 0 //update DV entry in NACK

else if NACK.DV[i] ==∞ & CPdv(k+i).BC == TRUE

//the nack for the requested packet is already sent

do nothing

else if NACK.DV[i] ==∞ & CPdv(k+i).D 6=∞
//this node has CPDV entry for Pkt(k+i)

CPdv(k+i).D =∞ & CPdv(k+i).BC = TRUE

NeedToNack = TRUE //need to forward NACK

//invalidate CPDV entry & set BC flag

else if NACK.DV[i] ==∞ //Pkt(k + i) is not recovered

add CPdv(k+i) & CPdv(k+i).BC = TRUE

NeedToNack = TRUE //need to forward NACK

else if NACK.DV[i] 6=∞ //CPDV advertise

NACK.DV[i] = CPdv(k+i).D //Update CPDV information

if NeedToNack == TRUE & myId != NACK.SRC //I am not the source

ForwardNack(G,S,k, its upstream node)& forward NACK to upstream node

else ignore NACK and return

Upon receiving a retransmitted Pkt(i)

if CPdv(i).BC == TRUE //BC flag is set – need to forward

Retransmit(G,S,i) //broadcast retransmission

CPdv(i).BC = FALSE //set BC flag to false

if nb ∈G //I am a forwarding node or member

CdataG = CdataG ∪ Pd //add data to cache

CPdvG = CPdvG ∪ 〈S, i, nb, 0, ts, 0〉 //add CPDV entry

27

