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Abstract—Mobile peer-to-peer systems have recently got in the
limelight of the research community that is striving to build
efficient and effective mobile content addressable networks. Along
this line of research, we propose a new peer-to-peer (P2P) file
sharing protocol suited to mobile ad hoc networks (MANET).
The main ingredients of our protocol are network coding and
mobility assisted data propagation, i.e., single-hop communica-
tion. We argue that network coding in combination with single-
hop communication allows P2P file sharing systems in MANET
to operate in a more efficient manner and helps the systems
to deal with typical MANET issues such as dynamic topology
and intermittent connectivity as well as various other issues
that have been disregarded in previous MANET P2P researches
such as addressing, node/user density, non-cooperativeness, and
unreliable channel. Via simulation, we show that our P2P protocol
based on network coding and single-hop communication allows
shorter file downloading delays compared to an existing MANET
P2P protocol.

Index Terms—File swarming, mobile ad hoc networks,
mobility-assisted, network coding, peer-to-peer, random linear
code.

I. INTRODUCTION

Peer-to-peer (P2P) file sharing in mobile ad hoc networks
has continuously gained popularity due to its strong adapt-
ability in many practical applications. However, using existing
P2P file sharing systems (such as Gnutella and BitTorrent) on
mobile ad hoc networks (MANET) inherently contains some
limitations since they are mainly developed for the wired
networks. Recently, several P2P schemes targeting MANET
have been proposed as in MANET-optimized versions of
existing P2P as well as clean-slate designs. Most of the
recently proposed MANET P2P protocols attempt to address
the problems caused by dynamic topology through cross-
layer optimization since MANET is characterized by highly
dynamic topology; however, P2P protocols are encumbered
with various other characteristics of MANET.

First problem is caused by the fact that the wireless channel
is error prone. If a protocol is designed without consider-
ing potential errors, the performance of the protocol in real
deployment will be seriously degraded. For example, TCP
connections usually die out in multihop networks with lossy
channel but most P2P protocols simply assume that TCP offers
reasonable bandwidth. Secondly, number of users and user
density should also be considered. In a file sharing scenario,
the total number of users can scale up to tens of thousands
of nodes, and theoretically, all of the nodes can be users
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running P2P protocols. Even with any cross-layer optimiza-
tion, no conventional MANET routing protocols is expected
to support such big networks. Possible non-cooperative nodes
are another concern. Most MANET protocols are designed
based on the assumption of node cooperativeness. Multihop
routes can only be established when there are nodes willing
to serve as relays for the sake of data sender. In a MANET
built/maintained/owned by a single entity, such as a military
tactical network or wireless mesh network, nodes can easily
be forced to cooperate to achieve a common goal (e.g.,
providing a communication infrastructure.) But in other types
of MANET such as vehicular ad hoc networks (VANET)
consisting of cars, trucks, or any other types of vehicles on
the road, it is very likely that nodes are operated by different
entities for their own good and thus it may not possible to force
every node to cooperate each other. Lastly, IP addressing is
non-trivial in large scale MANET. It is not clear how each
node will be assigned an IP address in a large scale MANET
such as VANET.

In this paper, we investigate the problem of running Bit-
Torrent type P2P file sharing systems, i.e., file swarming
protocols, in MANET. To remedy the issues identified above,
we take a holistic approach. Put another way, instead of
solving each issue separately as an independent problem, we
design an entirely new protocol to address all these problems
at once. As we can see, the use of existing MANET routing
protocols in P2P file swarming give rise to most of the
issues. In our design, we resort to single-hop communication.
Multihop routes are never used and thus are not required to
be maintained explicitly by any layer in the protocol stack.
Rather, multihop communication is implicit. We restrict logical
peers, i.e., nodes exchanging file pieces, to physical neighbors,
yet data is propagated through the (overlay) network of peers
of common interest, which is the basic concept of operation
of P2P file sharing systems. The main problem of restricting
logical peers to physical neighbors in MANET, however, is
connectivity amongst peers. It might be difficult for a node to
find peers of common interest. Even though some peers are
found, there is no guarantee that those peers possess useful
data. The main ingredients of our design are network coding
and mobility assisted data propagation (e.g. [2]). The two
techniques allow our design to maintain enough connectivity
among peers with low overhead such that users can download
files in less time than existing protocols.

By network coding, we refer to the notion of performing
coding operations on the contents of packets throughout a
network. This notion is generally attributed to Ahlswede et
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al. [1], who showed the utility of the network coding for
multicast. The work of Ahlswede et al. was followed by other
work by Koetter and Médard [12] that showed that codes with
a simple, linear structure were sufficient to achieve the capacity
of multicast connections in lossless, wireline networks. This
result was augmented by Ho et al. [9], who showed that
a random construction of the linear codes was sufficient.
The utility of such random linear code for wired P2P file
sharing systems was soon realized in [8]. Network coding
improves the performance of P2P file swarming systems since
it mitigates the block transfer scheduling or piece selection
problem especially when only local information is given and
nodes dynamically join/depart. It helps increase the number
of distinct pieces available in the network via coding, thus
providing a higher chance for peers to pull useful pieces [4],
[8]. Recently, implementation and performance issues in net-
work coding based P2P have been investigated in [23], [22],
[14]. Our contribution in this lineage is that we show the
utility of random linear code for P2P file swarming protocols
“in MANET.” Our work is inspired by [8] in which the
performance advantage of using random linear code in “wired”
P2P systems is investigated. Different from [8], we show that
network coding helps exploit unique opportunities offered in
the MANET P2P environment, the broadcast nature of wireless
medium and node mobility. Our file swarming protocol based
on network coding and mobility assisted data propagation, i.e.,
single-hop communication, shows less download delay than an
existing MANET file swarming protocol.

The rest of this paper is organized as follows. Section II
illustrates our network coding based file swarming protocol
and we evaluate the protocol through simulation in Section III.
Section IV presents the related work and, finally, Section V
concludes this paper.

II. NETWORK CODING BASED FILE SWARMING PROTOCOL

In this section, we describe our file swarming protocol for
MANET named CodeTorrent. To start, we define a seed node
to be a node which possesses a complete file and has intension
to share the file. The seed node announces the availability of
the file via one-hop broadcast of the description of the file.
Similar to the torrent file in BitTorrent protocol, a description
contains, for example, identification number, file name, file
size, number of pieces, etc. We simply assume that each file
can be uniquely identified with an identification number (fileid)
during the time period in which every node interested in the
file completes its downloading.

At the seed node, a file F is divided into n pieces p1,
p2, ..., pn. In our protocol, nodes exchange coded frames
instead of file pieces. We define a coded frame c to be a
linear combination of file piece pk’s. That is, c =

∑n
k=1 ekpk

where ek is a certain element in a certain finite field F over
which every arithmetic operation is. File piece p’s and coded
frame c’s are also regarded as vectors over F. Whenever
the seed node is requested to exchange a coded frame, the
node transmits a newly generated a coded frame c and when
generating c, each ek is drawn randomly from F, hence the
name of random linear coding (RLC). In the header of a

coded frame, the encoding vector e = [e1 ... en] is stored
for the purpose of later decoding [5]. Throughout this paper,
we use lowercase boldface letters to denote vectors, frames, or
packets, uppercase letters to denote matrices, italics to denote
variables.

A node learns of a file from receiving the file’s descrip-
tion transmitted from neighbors. If the node finds the file
interesting, it broadcast a request containing fileid of the file
and the transaction ID. Upon receiving such a request, the
node responds with a newly generated coded frame. A node
may receive a request even though it does not possess the
complete file, i.e., it is not a seed node. If it possesses any
coded frame of the requested file, it should respond to the
request. The reply, i.e., a coded frame, is accompanied by
the corresponding transaction ID. A node keeps requesting
neighbors to send coded frames until it collects n coded frames
carrying encoding vectors that are linearly independent of each
other. Simultaneous requests and replies can be distinguished
and matched by their transaction IDs. Every node announces
the availability of any coded frame it possesses. Not only
the seed node of a file also every node which possesses any
coded frame of the file and willing to share them periodically
broadcasts to its 1-hop neighbors the description of the file.
If a node has multiple files to share, multiple descriptions are
packed into the least number of packets that can carry all of
them and then transmitted.

Whenever requested, every node, not just the seed node,
creates on-the-fly and transmits a new coded frame. To create
a “new” code frames on a non-seed node which is defined to
be a node possessing a number of coded frame less than n,
the coded frames stored in local memory are used. A non-seed
node generates a random linear combination of coded frames
available in local memory and transmits it. Since the frames
in local memory are already coded ones, the “re-encoded”
frame to be transmitted ć =

∑rnk
k=1 ékck is tagged with the

encoding vector é =
∑rnk

k=1 ékek where ck and ek is a coded
frame in local memory and the encoding vector prefixed to ck

respectively. rnk is the number of ck’s found in local memory.
When encoding, each ék is drawn uniformly from F.

To recover n file pieces p1, p2, ..., pn, a node must collect
more than n coded frames carrying encoding vectors that are
linearly independent of each other. Let ck be a coded frame,
ek be the encoding vector prefixed to ck, and pk be a file piece
to be decoded and recovered where k = 1, ..., n. Further, let
ET = [eT1 ... eTn], CT = [cT1 ... cTn], and PT = [pT1 ... pTn] where
superscript T denotes the transpose operation. The original file
pieces are obtained from P = E−1C. Note that all ek’s must
be linearly independent to be able to invert E.

A request of coded frames may be accompanied by the
nullspace vector which is a vector in the nullspace spanned by
all encoding vectors of the frames stored in the local memory
of the requesting node. On reception of such a request, a node
transmits a coded frame only if there is in its local memory
a frame with the encoding vector that is not orthogonal to the
nullspace vector received with the request.

Every node promiscuously listens to packets, i.e., a node
receives a specific packet even the node is not the designated
receiver, so that it can use them if possible. A node always
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overhears the packets carrying coded frames and treats the
overheard ones as the coded frames transmitted specifically
to the node and if an overheard coded frame is linearly
independent of the coded frames in local memory, the node
stores it in local memory.

Since every transmission is MAC/link layer broadcasting, a
small random amount of wait time before each transmission
called broadcast jitter is applied to reduce collisions. Without
broadcast jitter, MAC/link layer broadcasting suffers severely
from the hidden terminal problem.

If shared files are large ones, there are additional issues. One
of them is the size of encoding vector. The size of encoding
vector is proportional to the file size divided by coded packet
size. Assuming GF(28), if the file size is 1GB and the packet
size is 1KB, then the size of encoding vector is 1MB which is
to large to fit in the header of coded frames. One solution
to this issue is to use the concept of “generation” [5] as
follows. The original file is divided into m generations. Each
generation i has g pieces (we call g the generation size) and
the piece size is fixed to b KB: i.e., pi,1, pi,2, · · · , pi,g for
i = 1, · · · , m. For each generation i, the seed node creates
a coded piece via random linear coding over all the pieces
in the same generation:

∑g
k=1 ckpi,k where ck is randomly

drawn over F. Each intermediate node similarly generates a
coded piece by combining all the coded pieces collected so
far for that generation and only keeps linearly independent
coded pieces. Each coded piece is marked with the generation
number, and coded pieces belonging to the same generation
are used for encoding. For a given generation, after collecting
g coded pieces that are linearly independent of each other, a
node can recover the original data by simply solving a set of
linear equations. This process repeats until the node collects
all m generations.

III. EVALUATION

In this section we evaluate and compare the performance
of CodeTorrent to CarTorrent [16], an earliest file swarming
protocol for MANET, through simulations using Qualnet [20].
In the simulations, we use IEEE 802.11b PHY/MAC with
2Mbps bandwidth and Random Waypoint mobility model. A
fraction of nodes (denoted as popularity) in the network is
interested in downloading the same file. There is a special
type of node called AP which possesses the complete file at the
beginning of each simulation. Three static APs are randomly
positioned on the 2400m x 2400m field. In CarTorrent, we
use UDP to transfer data packets. As the underlying routing
protocol, we use AODV [19]. We limit the scope of the gossip
packets (which tell who possesses what) to 3 hops as proposed
in the original design [16]. We also limit the TTL value of
RREQ in AODV to 3 hops (same as gossip packets.) Each
node initiates a piece downloading either periodically (i.e.,
every 0.5 second) or upon receiving a new gossip packet.
Successful downloading of a piece will also initiate download-
ing of another piece. Piece availability gossiping is carried
out for every 5 seconds. We use a probabilistic gossiping:
uninterested and interested nodes forwarded the gossiping
packets with probability 0.1 and 0.8 respectively. Similarly,
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Fig. 1. Aggregated downloading progress (200 nodes moving at maximum
speed of 20 m/s with 40% popularity)

CodeTorrent uses UDP to transfer packets to its neighbors.
CodeTorrent does not use any underlying routing protocol,
because it only relies on the single hop unicast. Overhearing is
allowed in CodeTorrent (i.e., every node promiscuously listen
to the wireless channel and receive packets regardless of their
destinations.) and GF(28) is used for coding.

Unless otherwise specified, the sharing file is 1MB sized and
a single generation constitutes the file. The block or piece size
is 4KB and thus there are 250 pieces total in the generation.
In the CodeTorrent case, a peer must acquire 250 linearly
independent coded pieces to decode the file. A coded piece
with encoding vector prefixed is transferred using multiple
1KB packets. Since the size of the encoding vector is 250B,
about 6% of each packet is the overhead paid for the encoding
vector.

We define the download “delay” to be the elapsed time
for a node to collect all the pieces constituting the file for
CarTorrent or a enough number (same as the generation size)
of linearly independent coded pieces from which the original
file can be recovered for CodeTorrent. The given metric is
evaluated with various configurations, i.e., as a function of
node density, maximum node speed, and fraction of interested
nodes.

A. Comparison of Download Delay

First, we contrast the download delay of CodeTorrent to that
of CarTorrent in a specific setting to show the performance
benefit of CodeTorrent over CarTorrent.

The aggregated downloading progress (cumulative his-
togram with slot size of 20 seconds) is shown in Figure
1. For each time slot (x-axis), the figure plots the average
fraction of pieces collected by 80 nodes for CarTorrent and
the averaged fraction of linearly independent coded pieces
collected by 80 nodes for CodeTorrent. The figure clearly
indicates that CodeTorrent significantly expedites the overall
progress compared to CarTorrent.

Figure 2 shows the histogram of download delays for both
protocols with a slot size of 20 seconds. In CodeTorrent, nodes
collectively help each other to distribute coded pieces using
network coding (i.e., algebraic mixing) and overhearing. At
the second time slot, i.e., [20,40), we see that around 5 nodes
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Fig. 2. Histogram of download delays
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Fig. 3. Average hop count histogram for multi-hop pulling in CarTorrent

become seeds (a node becomes a seed when it completes
downloading of the shared file), which is followed by a burst
of about 15 new seeds in a few next slots. As the number of
seeds increases in the network, the usefulness of random coded
packet increases and thus, this further shortens downloading
time.

On the other hand, CarTorrent does not show such burst
births of seeds, but seeds are born rather gradually. This
is mainly due to the competition among nodes to secure
downloading bandwidth. For example, after receiving a gossip
packet from nodes or APs, in the worst case, 80 interested
nodes start requesting pieces all at the same time. Since over-
hearing is not assumes, a number of nodes inevitably contend
for the limited bandwidth. This crowd effect causes severe
channel contention, thus resulting in performance degradation
as shown in Figure 2. Moreover, some peers that are not one-
hop physical neighbors to each other necessitate multi-hop
communication which aggravates the channel contention. In
Figure 2, it shows that the first download completion happened
at the second slot and the maximum birth rate of seeds1

was always less than 5. To show the behavior of multi-hop
pulling, in Figure 3 we plot the histogram of average hop
count exceeding 1 hop with a slot size of 20 seconds. The
figure clearly states that since the availability of a random
piece increases as time passes, the average hop count gradually
decreases. Multi-hop pulling continues until 500 seconds by

1Number of newly born seeds for a given slot.
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which about 95% of interested nodes became seeds. As of the
700 second mark, nodes stop fetching pieces using multi-hop
communications. Note that CarTorrent uses the closest-rarest
first strategy for piece selection; that is, a piece located in the
closest peer is selected for downloading and ties are broken
on rarity.

B. Impact of mobility

Next, we investigate the impact of mobility on the download
delay. The average download delay as a function of node
speed with various node densities is illustrated in Figure
4. We only present the results for the popularity 40% case
since the results for other popularity indices show similar
trends. (We investigate the impact of popularity in the next
subsection.) The figure shows that in CarTorrent as the num-
ber of nodes increases, the performance gradually degrades.
Given a popularity index, an increased total number of nodes
(N) means an increased number of interested nodes, e.g.,
N = 100 and 200 cases have 40 and 80 interested nodes
respectively. As the number of interested nodes increases, the
overhead of the underlying routing protocol and gossiping
becomes problematic. Fast mobility will induce more route
errors especially when the number of interested nodes is
large. For instance, when N = 200, the average number of
AODV route error messages (RERRs) increases from 61 to
149 when the maximum speed increases from 10 to 30 m/s.
Such routes errors will re-initiate route discovery (i.e., RREQ)
and will consequently worsen the network congestion. Another
important factor attributing to such congestion is the periodical
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gossiping. Our simulations constrain that a gossiping packet
can travel up to 3 hops, and the gossiping period is fixed
to 5 seconds. The network congestion is inevitable as the
number of nodes participating gossiping increases. Moreover,
gossiping period must be adjusted according to mobility in
order to accurately choose the closest node (i.e., closest-rarest
first selection). That is, the higher the mobility, the more
the frequent the advertisements. However, this will further
exacerbate the network congestion, thus resulting performance
degradation. Figure 5 plots the average number of broadcast
packets received per node as a function of node speed and
network size in CarTorrent. Broadcast packets composed of
routing control packets and gossip messages contribute to
overhead. (Recall that data packets are delivered via unicast.)
As depicted in the figure, as the network size and mobility
increase, the number of broadcast packets sharply increases.

In contrast, the average download delay of CodeTorrent
decreases as mobility increases. Since CodeTorrent is based
on single hop data pulling and overhearing, mobility plays an
important role such that data dissemination latency could be
reduced with increased mobility. For ease of an explanation,
let us imagine two nodes traveling along the same path without
any other contacts until they reach the end of the path. After
exchanging useful information at the beginning, the remaining
contact period will be useless to each other. We realize that
the useless period can only be shortened when we increase
their mobility. As shown in Figure 4, this “mobility”-based
mixing on top of algebraic mixing through network coding
can further reduces the delay. To support this observation,
we plot the average fraction of helpful coded pieces (i.e.,
having a linearly independent code vector) that are pulled or
overheard from one’s neighbors in Figure 6. As the average
number of neighbors increases, it is more probable that a
node overhears unhelpful coded pieces from its neighbors.
For example, in a static scenario a set of nodes located in
between two groups as forwarders, will receive more linearly
dependent coded pieces when the size of the target group
increases. If nodes are mobile, this can be alleviated, and thus,
the helpfulness improves with increased mobility. One caveat
is that if the mobility is too high, the contact period will be
too short to exchange a piece and this will adversely affect
the performance.
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The performance advantage of CodeTorrent compared to
CarTorrent comes from several aspects. First, CodeTorrent
does not incur any routing overhead and the saved band-
width admits additional data transfer. In CarTorrent, routing
and gossip overhead consumes large portion of bandwidth
limiting its performance especially when the network size
is large and node mobility is high as depicted in Figure 5.
Second, the use of network coding helps exploit node mo-
bility and the broadcast nature of wireless medium in full.
To identify the source of benefit, we compare CodeTorrent
and CarTorrent to its three variants: CodeTorrent without
network coding (CodeTorrent-w/o NC), CodeTorrent without
overhearing (CodeTorrrent-w/o OH), and CodeTorrent with
both network coding and overhearing disabled (CodTorrent-
w/o NC & OH) in Figure 7.2 By comparing CodeTorrent with
both network coding and overhearing disabled and CarTorrent,
we can see that a major part of delay benefit comes from
suppressing routing and gossiping overhead. CodeTorrent with
both network coding and overhearing disabled is basically the
same as CarTorrent with single-hop communication restric-
tion. Enabling network coding and/or overhearing on top of
CarTorrent with single-hop communication restriction further
reduces download delay. Enabling both network coding and
overhearing at the same time gives 55% to 70% reduction
in average download delay whereas enabling just network
coding when overhearing is not presented allows only 25%
reduction in average download delay. Having said that, we
make the following observations from Figure 5 First is that
the exploitation of mobility is maximized (compared to other
cases) when both network coding and overhearing is enabled.
In CodeTorrent, the average download delay is decreased by
30% when the node speed is increased from 10m/s to 30m/s
whereas the average download delay is either increased or
decreased marginally in CarTorrent and CodeTorrent variants.
Second is that the benefit of overhearing is maximized with
network coding. When the maximum node speed is 30m/s,
the performance improvement from enabling overhearing is
57% when network coding is used (i.e, the performance
improvement of “CodeTorrent” from “CodeTorrent-w/o OH”

2As in CarTorrent, the closest-rarest first strategy is used for piece selection
in the CodeTorrent-w/o NC. All peers are with the same one-hop distance,
and thus, a node chooses the least available piece measured in terms of the
number of nodes having the piece.
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Fig. 8. Impact of popularity on average download delay

is 57%) whereas enabling overhearing provides only 40%
performance improvement when network coding is not used
(i.e., the performance improvement of “CodeTorrent-w/o NC”
from “CodeTorrent-w/o NC & OH” is 40%). Interestingly,
when network coding is enabled, the performance gain of
overhearing increases, as the node speed increases. This is
due to the fact that the usefulness of overheard or pulled coded
pieces increases with node speed as shown in Figure 6.

CodeTorrent relies on single-hop communication and thus
node mobility is essential to the protocol. CodeTorrent may
fail to operate in a static network with a limited number of
users with common interest. Dynamically changing topology
and/or enough density of users with common interest offers
chances for users to communication with each other, i.e.,
maintains a logical peer-to-peer network, only with single-
hop communications. CodeTorrent is designed for MANET
in which nodes are moving. We expect that CodeTorrent will
show limited performance in the extreme cases with very low
node mobility and very few users with common interest.

C. Impact of popularity

To show the impact of the popularity of a file, i.e., the
fraction of users who are interested in a specific file, we vary
the popularity from 20% to 60% of the population. Figure
8 shows the results with the maximum node speed of 10
m/s. In general, as popularity increases, the average download
delay also decreases. In particular, the relative decrement
of download delay of CodeTorrent is larger than that of
CarTorrent. For example, in CodeTorrent with N=100, we
observe 36% and 23% relative decrements when we increase
0.2 to 0.4 and 0.4 to 0.6 respectively, but in CarTorrent with
N=100, we see 22% and 12% respectively.

The figure also shows that as node density increases, the
average download delay decreases. For a given popularity,
we obviously have more interested nodes, as node density
increases. More interested nodes in turn mean the increment
of availability. As a result, the average download delay can
be shortened. In the figure, there is one exceptional case in
CarTorrent with N=200 and 60% popularity: unlike all the
other cases, as popularity increases, the delay also increases.
Again, 60% popularity with N=200 means that there are
120 interested nodes. This implies that there are already too

Fig. 9. Download delay as function of number of generations with two
different block sizes (4KB/8KB).

many nodes who want to download the file. These nodes will
compete with each other to secure the downloading bandwidth.
As a result, there will be severe congestion, and thus, packet
drops will increases accordingly. The overall packet loss at the
MAC layer can be used to confirm this. The average drops for
20% were 31.4 whereas that for 60% were 168.8 (6 times
larger!).

D. Impact of generation size

One of the important performance parameters in network
coding based content distribution is the number of generations
in the shared file. The use of network coding mitigates the peer
and piece selection problem in P2P file swarming. However,
once the concept of generation is introduced, the piece (or
generation) selection problem reoccurs, i.e., one may find rare
pieces or generations, and thus as the number of generations
increases the benefit of network coding gets vanished. Another
very important benefit of network coding exclusively to the
wireless environment comes from the broadcast nature of the
wireless medium. When two nodes are exchanging the file
pieces the other nodes that can hear their transmission can
download the pieces for free. Nodes can exploit overhearing in
wireless networks and network coding maximizes the benefit
of overhearing. We illustrate the impact of the number of
generations using two extreme cases with a file comprised of
m pieces: one with a single generation and the other with m
generations. In the single generation scenario, any overheard
piece is very likely to be useful. Of course, it has to be linearly
independent of other downloaded pieces to be helpful. On
the other hand, in the m generation scenario the probability
that an overheard packet is useful depends on the number of
generations that a node has collected so far. When a node has
collected k generations, the probability is given as 1 - k/m.
The probability decreases as a node collects more generations,
that is, the coupon collection problem will happen.

Figure 9 illustrates download delays with different numbers
of generations. The results are for the case with 80 interested
node out of 200 nodes moving in 30m/s speed and with the
5MB sharing file. For generation selection, a node uses the
rarest generation first policy: a node chooses the least available
generation measured in terms of the number of nodes having
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the generation (i.e., at least one piece.) We use two different
piece sizes, either 4KB or 8KB. The large piece size (8KB)
cases show larger download delays since, in case of high
mobility, file piece transfers fail more frequently. In other
words, a large piece takes more time to be transferred but
two fast moving nodes crossing each other may not be able
to secure contact duration long enough for a successful piece
transfer.

Figure 9 clearly shows that as the number of generations
increases, the download delay also increases. The single gen-
eration case shows 10% to 20% less download delay compared
to the case with 50 generations. From the results we can
learn that one should decrease the number of generations to
achieve better performance. However, there are other issues to
be considered. One is the encoding vector size. As we decrease
the number of generations, the generation size (the number of
pieces belongs to the same generation) and the encoding vector
size gets larger and beyond certain point the overhead may
become unmanageable. For example, if we have a 10M file
divided into 4KB blocks and there is only one generation in
the file, the number of blocks in a generation is 2500 and with
GF(28) the encoding vector size is already over half the block
size. Given the file size, to have shorter encoding vectors,
one may increase the block size. In our simulations setting
however, increasing the block size has a negative effect on the
download delay as mentioned above.

The computational overhead of network coding is another
issue to be considered. If the decoding process is the bot-
tleneck, the total download delay must include the delay
caused by the decoding process. A naive implementation of
the decoding process may cost as high as O(m3) where
m is the generation size. However, by employing the pro-
gressive/incremental decoding technique proposed in [5], the
complexity of decoding can be reduced to O(m2) [24]. In
fact, it is shown in [22] that by using hardware acceleration
techniques suited to modern general purpose processors we
can decode data at a rate of 16.38Mbps (when m=128) which
way exceeds the wireless transmission rate of 2Mpbs. Note
that only small portion of the wireless channel bandwidth of
2Mbps is available to each user since the wireless channel is to
be shared by nodes in the same collision domain and protocol
overhead also consumes some of the bandwidth. Thus, we do
not consider the computational overhead in our simulations.
If the channel bandwidth is very high and the size of the
shared file is also very large, the decoding delay may not be
negligible.

IV. RELATED WORK

A major portion of MANET peer-to-peer works can be cat-
egorized as mobility-assisted content distribution techniques.
A mobility-assisted protocol basically utilizes node mobility
to disseminate/retrieve content or index. 7DS [17] aims at
sharing web content among nodes based on a high locality
of information access within a geographic area, even without
Internet connectivity. A node can pull and carry content of
interest from its neighbors, thus diffusing content into the
network. In Passive Distributed Index (PDI) [13], mobility is

exploited for disseminating and maintaining a distributed index
of shared content. CodeTorrent is different from these work in
that it provides a BitTorrent style content sharing mechanism
based on network coding similar to [8]. We show in this paper
that there are benefits of using network coding typical to the
MANET content sharing scenario, which differentiates our
work from [8].

A group of MANET peer-to-peer works is classified as
cross-layer techniques. Cross-layer techniques incorporate
content indexing and routing as a single layer. Most protocols
have been focused on overcoming the discrepancy between a
logical overlay and a physical topology of mobile nodes. For
example, XL-Gnutella [6] maps the logical overlay neighbors
to physical neighbors. CarTorrent [16], a BitTorrent style con-
tent sharing protocol in wireless networks, uses the proximity-
driven piece selection which is known to perform better than
the rarest first piece selection. Similarly, ORION [11] builds
an on-demand content-based overlay, closely matching the
topology of an underlying network. Unlike these approaches,
CodeTorrent attempts to tackle dynamically changing topology
and intermittent connectivity in MANET as well as various
other issues that have been disregarded in previous mobile
peer-to-peer researches such as addressing, node/user density,
non-cooperativeness, and unreliable channel all together with
the help of network coding and mobility assisted dissemination
techniques.

Also cross-layer approaches can be found in in distributed
hash table (DHT) inspired protocols. The VRR protocol is a
clean slat approach for Content Based Routing in MANET.
VRR is implemented on the top of the link layer and provides
a reliable routing as well as a native content addressable
network [3]. Another DHT inspired approach is represented
by the Geographic Hash Tables [21] where the contents hare
hashed into a geographic location and the retrieval is driven
by the a geographic routing performed over the MANET.

Using network coding in P2P was first proposed in [8] and
recent feasibility studies on network coding in real testbeds
have been done in [7], [14], [23]. Various performance en-
hancement techniques have been proposed [14], [15], [22].
In [14], authors propose the sparse network coding where
each piece is selected for coding with a certain probability,
thus reducing the number of pieces involved in coding. May-
mounkov et al. show that one can decrease the generation
size, yet can still effectively handle the coupon collection
problem by using erasure codes at the generation level [14].
The coding technique proposed in [14] may alleviate the
generation selection problem in our protocol. The technique
allows the nodes to collect any m generations out of total
k (bigger than m) generations instead of collecting each of
m distinct generations. However, even with the technique in
place, different node pairs still need to exchange coded frames
belonging to different generations reducing their chances to
be helpful to each other. Thus, we expect that employment
of the coding technique proposed in [14] instead of RLC will
not lead to meaningful reduction in download delay with our
protocol especially under the simulation settings used in this
paper. Shojania et al. in [22] use CPU acceleration techniques
to improve the performance of Galois Field operations. Some
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other network coding researches relevant to our scenario are
the opportunistic routing with network coding [10] and multi-
casting [18] in the wireless environment and network coding
based message dissemination in delay tolerant networks [25].

V. CONCLUSION

In this paper we proposed a network coding based file
swarming protocol named CodeTorrent offering less download
delay than an existing file swarming protocol. We showed that
network coding helped exploit unique opportunities offered in
the MANET P2P environment, the broadcast nature of wireless
medium and node mobility and by exploiting them in full
we could have a very simple solution to the issues arising
in MANET file swarming systems. We kept the system in the
simplest form in this paper for clearer presentation of the main
idea. Immediate future work includes exploring optimization
opportunities that the proposed protocol allows.
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